Pregunta
upstudy study bank question image url

Which is true about the degree of the sum and difference of the polynomials \( 3 x^{5} y-2 x^{3} y^{4}-7 x y^{3} \) and \( -8 x^{5} y+2 x^{3} y^{4} \) \( +x y^{3} \) ? Both the sum and difference have a degree of 6 . Both the sum and difference have a degree of 7 . The sum has a degree of 6 , but the difference has a degree of 7 . The sum has a degree of 7 , but the difference has a degree of 6 .

Ask by Herrera Carroll. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sum has a degree of 6, but the difference has a degree of 7.

Solución

To determine the degrees of the sum and difference of the given polynomials, let's analyze each step carefully. **Given Polynomials:** 1. \( P = 3x^5y - 2x^3y^4 - 7xy^3 \) 2. \( Q = -8x^5y + 2x^3y^4 + xy^3 \) **Sum \( S = P + Q \):** \[ S = (3x^5y - 8x^5y) + (-2x^3y^4 + 2x^3y^4) + (-7xy^3 + xy^3) \] \[ S = -5x^5y + 0 + (-6xy^3) = -5x^5y - 6xy^3 \] - **Degrees:** - \( -5x^5y \): Degree \( 5 + 1 = 6 \) - \( -6xy^3 \): Degree \( 1 + 3 = 4 \) **Degree of Sum \( S \):** **6** (maximum degree among the terms) --- **Difference \( D = P - Q \):** \[ D = 3x^5y - (-8x^5y) + (-2x^3y^4) - 2x^3y^4 + (-7xy^3) - xy^3 \] \[ D = 11x^5y - 4x^3y^4 - 8xy^3 \] - **Degrees:** - \( 11x^5y \): Degree \( 5 + 1 = 6 \) - \( -4x^3y^4 \): Degree \( 3 + 4 = 7 \) - \( -8xy^3 \): Degree \( 1 + 3 = 4 \) **Degree of Difference \( D \):** **7** (maximum degree among the terms) **Conclusion:** - The **sum** has a degree of **6**. - The **difference** has a degree of **7**. **Answer:** The sum has a degree of 6, but the difference has a degree of 7.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the degrees of the sum and difference of the given polynomials, let’s calculate them. The first polynomial is \( 3x^5y - 2x^3y^4 - 7xy^3 \) and the second polynomial is \( -8x^5y + 2x^3y^4 + xy^3 \). When we combine them, the leading term will dictate the degree. The highest degree term in the first polynomial is \( 3x^5y \) (degree 6), and in the second polynomial, it is \( -8x^5y \) (degree 6) as well. Thus, the highest term remains, and they will cancel out when we subtract. The sum will yield a degree of 6. However, their difference will also feature \( 11x^5y \), reinforcing the degree at 6. Hence, both the sum and difference have a degree of 6. That's an exciting find! When dealing with the degrees of polynomials, always focus first on the highest degree term. It's the key indicator! A common mistake is to overlook combining like terms; this can lower the polynomial's degree unexpectedly. So, careful attention can save you from what would be a rude awakening!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad