Pregunta
upstudy study bank question image url

3) \( x^{2}-6 x+5 \) 4) \( x^{2}-5 x+6 \) 5) \( x^{2}-5 x-6 \) 6) \( x^{2}-x-6 \)

Ask by Cox Hampton. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the factored forms of the given quadratic expressions: 1. \( x^{2} - 6x + 5 = (x - 1)(x - 5) \) 2. \( x^{2} - 5x + 6 = (x - 2)(x - 3) \) 3. \( x^{2} - 5x - 6 = (x - 6)(x + 1) \) 4. \( x^{2} - x - 6 = (x - 3)(x + 2) \)

Solución

Certainly! Let's factor each of the given quadratic expressions. ### 3) \( x^{2} - 6x + 5 \) **Objective:** Factor the quadratic expression. **Method:** 1. Look for two numbers that multiply to **+5** (the constant term) and add up to **-6** (the coefficient of \( x \)). 2. The numbers are **-1** and **-5** because: - \((-1) \times (-5) = +5\) - \((-1) + (-5) = -6\) **Factored Form:** \[ x^{2} - 6x + 5 = (x - 1)(x - 5) \] --- ### 4) \( x^{2} - 5x + 6 \) **Objective:** Factor the quadratic expression. **Method:** 1. Look for two numbers that multiply to **+6** and add up to **-5**. 2. The numbers are **-2** and **-3** because: - \((-2) \times (-3) = +6\) - \((-2) + (-3) = -5\) **Factored Form:** \[ x^{2} - 5x + 6 = (x - 2)(x - 3) \] --- ### 5) \( x^{2} - 5x - 6 \) **Objective:** Factor the quadratic expression. **Method:** 1. Look for two numbers that multiply to **-6** and add up to **-5**. 2. The numbers are **-6** and **+1** because: - \((-6) \times (+1) = -6\) - \((-6) + (+1) = -5\) **Factored Form:** \[ x^{2} - 5x - 6 = (x - 6)(x + 1) \] --- ### 6) \( x^{2} - x - 6 \) **Objective:** Factor the quadratic expression. **Method:** 1. Look for two numbers that multiply to **-6** and add up to **-1**. 2. The numbers are **-3** and **+2** because: - \((-3) \times (+2) = -6\) - \((-3) + (+2) = -1\) **Factored Form:** \[ x^{2} - x - 6 = (x - 3)(x + 2) \] --- **Summary of Factored Forms:** 1. \( x^{2} - 6x + 5 = (x - 1)(x - 5) \) 2. \( x^{2} - 5x + 6 = (x - 2)(x - 3) \) 3. \( x^{2} - 5x - 6 = (x - 6)(x + 1) \) 4. \( x^{2} - x - 6 = (x - 3)(x + 2) \) If you need further assistance or have more questions, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that quadratic equations like these have been studied since ancient times? The Babylonians had methods for solving simple quadratics as far back as 2000 BC! They didn’t use symbols or variables as we do today, but their geometric approach laid the groundwork for future mathematical developments. Now, let’s put these equations to work! In real-world applications, quadratic equations frequently arise in areas such as physics (for projectile motion), economics (to find maximum profit), and engineering. For example, if you're launching a rocket, the trajectory can be modeled with a quadratic equation. The solutions to these equations give critical information about where the rocket will be at any given time!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad