Pregunta
upstudy study bank question image url

Identify a method that could be used to determine the roots of the
given equations. Then use it to determine the roots.

Ask by Vaughn Lyons. in Canada
Dec 02,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a)
b)
c)
d)
e)
f)

Solución

To determine the roots of the given equations, we can use various methods such as factoring, the quadratic formula, or completing the square. Below, I will identify a suitable method for each equation and then solve for the roots.

a)

Method: Rearranging and factoring.
Solution:
  1. Rearrange the equation:
  2. Factor:
  3. Set each factor to zero:
Roots:

b)

Method: Taking the square root.
Solution:
  1. Rearrange the equation:
  2. Take the square root:
Roots: (approximately )

c)

Method: Rearranging and using the quadratic formula.
Solution:
  1. Rearrange the equation:
  2. Use the quadratic formula:
    • Here,
    • Calculate the discriminant:
    • Calculate the roots:
    • This gives:
Roots:

d)

Method: Expanding and rearranging.
Solution:
  1. Expand both sides:
    • Left:
    • Right:
  2. Set the equation:
  3. Rearrange:
    • This simplifies to:
  4. Use the quadratic formula:
    • Here,
    • Discriminant:
    • Roots:
Roots:

e)

Method: Rearranging and taking the square root.
Solution:
  1. Rearrange:
  2. Take the square root:
  3. Solve for :
Roots:

f)

Method: Using the quadratic formula.
Solution:
  1. Use the quadratic formula:
    • Here,
    • Discriminant:
    • Roots:
    • This gives:
Roots:

Summary of Roots:

  • a)
  • b)
  • c)
  • d)
  • e)
  • f)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the roots of these equations, one effective method is factoring or rearranging the equations into standard polynomial form and then applying the quadratic formula where applicable.
For each equation:
a)
Rearranging gives . Factoring out gives . Therefore, the roots are and .
b)
Rearranging yields . Taking the square root gives or . Thus, the roots are approximately and .
c)
Rearranging gives . Using the quadratic formula results in roots and .
d)
Expanding both sides gives , leading to . Using the quadratic formula, the roots are and .
e)
Rearranging leads to or . Hence or which results in and .
f)
Using the quadratic formula , with , , and , results in roots approximately and .

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad