Pregunta
Find an ordered pair \( (x, y) \) that is a solution to the equation. \( 3 x-y=9 \) \( (x, y)=(\square), \square) \)
Ask by Warner Lynch. in the United States
Feb 02,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
One solution is \( (4, 3) \).
Solución
Solve the equation \( 3x-y=9 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3x-y=9\)
- step1: Move the expression to the right side:
\(3x=9+y\)
- step2: Divide both sides:
\(\frac{3x}{3}=\frac{9+y}{3}\)
- step3: Divide the numbers:
\(x=\frac{9+y}{3}\)
The solution to the equation \(3x-y=9\) is \(x=\frac{9+y}{3}\).
To find an ordered pair \((x, y)\) that is a solution to the equation, we need to find values of \(x\) and \(y\) that satisfy the equation.
Let's choose a value for \(y\) and substitute it into the equation to find the corresponding value of \(x\).
For example, if we choose \(y=3\), we can substitute it into the equation to find the value of \(x\):
\[3x-3=9\]
Solving for \(x\), we get:
\[3x=12\]
\[x=4\]
Therefore, one ordered pair that is a solution to the equation is \((x, y) = (4, 3)\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To find an ordered pair \( (x, y) \) that satisfies the equation \( 3x - y = 9 \), we can choose a value for \( x \) and then solve for \( y \). Let's take \( x = 4 \) as an example. Substituting \( 4 \) into the equation: \[ 3(4) - y = 9 \] \[ 12 - y = 9 \] Now, solve for \( y \): \[ -y = 9 - 12 \\ -y = -3 \\ y = 3 \] So one solution is \( (x, y) = (4, 3) \). Thus, the ordered pair is \( (x, y) = (4, 3) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium