Pregunta
Evaluate the two expressions and compare the answers: \( \left(8^{2}\right)^{4} \) and \( \left(8^{4}\right)^{2} \). Write your answers in exponent form. Part: \( \mathbf{0} / \mathbf{3} \) Part 1 of 3
Ask by Ayala Craig. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
Both expressions simplify to \(8^{8}\).
Solución
Let's evaluate and compare the two expressions:
1. **First Expression:** \(\left(8^{2}\right)^{4}\)
2. **Second Expression:** \(\left(8^{4}\right)^{2}\)
### Step-by-Step Evaluation
**1. Evaluating \(\left(8^{2}\right)^{4}\):**
When you raise a power to another power, you multiply the exponents:
\[
\left(8^{2}\right)^{4} = 8^{2 \times 4} = 8^{8}
\]
**2. Evaluating \(\left(8^{4}\right)^{2}\):**
Similarly, multiply the exponents:
\[
\left(8^{4}\right)^{2} = 8^{4 \times 2} = 8^{8}
\]
### Comparison
Both expressions simplify to the same exponent form:
\[
\left(8^{2}\right)^{4} = 8^{8} \quad \text{and} \quad \left(8^{4}\right)^{2} = 8^{8}
\]
**Conclusion:** Both expressions are equal and simplify to \(8^{8}\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To evaluate the expressions \( \left(8^{2}\right)^{4} \) and \( \left(8^{4}\right)^{2} \), we can use the power of a power property, which states that \( (a^{m})^{n} = a^{m \cdot n} \). For \( \left(8^{2}\right)^{4} \): \[ \left(8^{2}\right)^{4} = 8^{2 \cdot 4} = 8^{8} \] For \( \left(8^{4}\right)^{2} \): \[ \left(8^{4}\right)^{2} = 8^{4 \cdot 2} = 8^{8} \] Both expressions simplify to \( 8^{8} \). So, the answers are equal!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium