Pregunta
upstudy study bank question image url

A data set consist of the following 6 values: The range is 6 . The median is 5 . The lower quartile is 4 . The interquartile range is 3 . Given that \( x
Ask by Bartlett Montgomery. in Singapore
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x = 4 \), \( y = 6 \), and \( z = 7 \).

Solución

To determine the values of \( x \), \( y \), and \( z \) in the given dataset, let's analyze the provided information step-by-step. ### Given Information: 1. **Dataset Size:** 6 values, sorted in ascending order: \( a_1 \leq a_2 \leq a_3 \leq a_4 \leq a_5 \leq a_6 \). 2. **Range:** \( a_6 - a_1 = 6 \). 3. **Median:** With 6 data points, the median is the average of the 3rd and 4th values: \[ \frac{a_3 + a_4}{2} = 5 \implies a_3 + a_4 = 10 \] 4. **Lower Quartile (Q1):** For 6 data points, \( Q1 \) is the median of the first three values: \[ Q1 = a_2 = 4 \] 5. **Interquartile Range (IQR):** \[ IQR = Q3 - Q1 = 3 \implies Q3 = 7 \] \( Q3 \) is the median of the last three values, so \( a_5 = 7 \). ### Deductions: - **Value Relationships:** \[ a_1 \leq 4 \leq a_3 \leq a_4 \leq 7 \leq a_6 \] - **Sum of \( a_3 \) and \( a_4 \):** \[ a_3 + a_4 = 10 \] Possible integer pairs for \( (a_3, a_4) \) are \( (4, 6) \) and \( (5, 5) \). However, since \( a_4 \leq a_5 = 7 \), \( (4, 6) \) is the valid pair. - **Range Constraint:** \[ a_6 = a_1 + 6 \] - **Possible Values for \( a_1 \):** Considering \( a_1 \leq 4 \) and \( a_6 = a_1 + 6 \geq 7 \): - \( a_1 = 1 \): Dataset → \( 1, 4, 4, 6, 7, 7 \) - \( a_1 = 2 \): Dataset → \( 2, 4, 4, 6, 7, 8 \) - \( a_1 = 3 \): Dataset → \( 3, 4, 4, 6, 7, 9 \) - \( a_1 = 4 \): Dataset → \( 4, 4, 4, 6, 7, 10 \) ### Identifying \( x \), \( y \), and \( z \): From all possible datasets, the consistent middle values are \( 4 \), \( 6 \), and \( 7 \). Given the condition \( x < y < z \), these correspond to: - \( x = 4 \) - \( y = 6 \) - \( z = 7 \) ### Conclusion: The values of \( x \), \( y \), and \( z \) that satisfy all the given conditions are: \[ x = 4, \quad y = 6, \quad z = 7 \] **Final Answer:** After simplifying, the three values are 4, 6 and 7. Thus, \( x = 4 \), \( y = 6 \), and \( z = 7 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the values of \( x, y, \) and \( z \), let's use the information provided: 1. The range is 6, which means the difference between the maximum and minimum values of the data set is 6. 2. The median is 5, indicating that the middle value (or the average of the two middle values in case of an even number of values) of the sorted data set is 5. 3. The lower quartile is 4, meaning that 25% of the data falls below this value. 4. The interquartile range is 3, which is the difference between the upper quartile (Q3) and the lower quartile (Q1). So, Q3 = Q1 + 3 = 4 + 3 = 7. Now, we can summarize and deduce the ordered values: - Since \( x < y < z \), we can represent the values as \( x, 4, 5, 7, z \). - The maximum value should be \( z = x + 6 \) based on the range of 6. Since the median is the average of the middle two values in set of 6 values, let's arrange our data set to help analyze: The data set has these positions: 1. \( x \) 2. Q1 = 4 3. Median = 5 (the average of the third and fourth values, which are also 5 and 7) 4. Q3 = 7 5. \( z \), which has to be the highest value. By initializing: - Required values of \( x \) through reasoning: 1. \( y = 5 \) (as stated, median), 2. The values arranged will be \( x, 4, 5, 7, z \). 3. As per \( x < y < z\) and Q3 = 7, we have from our range and quartile details \( z \) should be the last element. Thus, we can conclude: - The data set aligns with \( 1.5, 4, 5, 7, 7.5 \) which satisfies all conditions perfectly. Hence: - \( x = 1, y = 5, z = 7 \), or similarly close values are \( 1, 4, 5, 7, 7.5\). Finally, the three values are: \( x = 1, y = 5, z = 7 \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad