(4) \( \frac{\left(3^{2} \cdot 5\right)^{-n+1} \cdot 5^{n-1} \cdot\left(3^{4}\right)^{-1}}{\left(2^{2}\right)^{n+2} \cdot\left(3^{2} \cdot 2^{2}\right)^{n-1}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify the expression \( \frac{\left(3^{2} \cdot 5\right)^{-n+1} \cdot 5^{n-1} \cdot\left(3^{4}\right)^{-1}}{\left(2^{2}\right)^{n+2} \cdot\left(3^{2} \cdot 2^{2}\right)^{n-1}} \), let's break it down step by step. First, we can express each component of the numerator and the denominator: 1. **Numerator:** - \( \left(3^{2} \cdot 5\right)^{-n+1} = 3^{-2(n-1)} \cdot 5^{-n+1} \) - \( 5^{n-1} \) remains the same. - \( \left(3^{4}\right)^{-1} = 3^{-4} \). Thus, the numerator simplifies to: \[ 3^{-2(n-1)} \cdot 5^{-n+1} \cdot 5^{n-1} \cdot 3^{-4} = 3^{-2(n-1)-4} \cdot 5^{-n+1+n-1} = 3^{-2n+2-4} \cdot 5^{0} = 3^{-2n-2} \] 2. **Denominator:** - \( \left(2^{2}\right)^{n+2} = 2^{2(n+2)} = 2^{2n+4} \). - \( \left(3^{2} \cdot 2^{2}\right)^{n-1} = 3^{2(n-1)} \cdot 2^{2(n-1)} = 3^{2n-2} \cdot 2^{2n-2} \). Thus, the denominator becomes: \[ 2^{2n+4} \cdot 3^{2n-2} \cdot 2^{2n-2} = 2^{2n+4 + 2n-2} \cdot 3^{2n-2} = 2^{4n+2} \cdot 3^{2n-2} \] Now, combining the numerator and denominator: \[ \frac{3^{-2n-2}}{2^{4n+2} \cdot 3^{2n-2}} = \frac{3^{-2n-2}}{3^{2n-2}} \cdot \frac{1}{2^{4n+2}} = 3^{-2n-2-(2n-2)} \cdot 2^{-(4n+2)} = 3^{-4n} \cdot 2^{-(4n+2)} \] Therefore, the final simplified expression is: \[ \frac{1}{3^{4n} \cdot 2^{4n+2}} \]