Pregunta
upstudy study bank question image url

Solve the equation by completing the square. \( x^{2}-\frac{5}{2} x-\frac{39}{16}=0 \) Determine the appropriate process for rearranging the equation before completing the square to obtain an equation of the form \( (x+k)^{2}= \) d. Select the correct choice below and fill in the answer box(es) within your choice. (Type an integer or a simplified fraction.) A. \( x^{2}-\frac{5}{2} x-\frac{39}{16}=0 \Rightarrow x^{2}-\frac{5}{2} x=\frac{39}{16} \Rightarrow x^{2}-\frac{5}{2} x+\frac{25}{16}=\frac{39}{16}+\frac{25}{16} \) B. \( x^{2}-\frac{5}{2} x-\frac{39}{16}=0 \Rightarrow x^{2}-\frac{5}{2} x=\frac{39}{16} \Rightarrow x^{2}-\frac{5}{2} x+\quad=\frac{39}{16} \) C. \( x^{2}-\frac{5}{2} x-\frac{39}{16}=0 \Rightarrow \frac{2}{5} x^{2}-x=\frac{39}{40} \Rightarrow \frac{2}{5} x^{2}-x+=\frac{39}{40}+ \) D. \( x^{2}-\frac{5}{2} x-\frac{39}{16}=0 \Rightarrow \frac{2}{5} x^{2}-x=\frac{39}{40} \Rightarrow \frac{2}{5} x^{2}-x+\quad=\frac{39}{40} \) The solution set is \( \left\{\begin{array}{l}\text { A. } \\ \text { (Simplify your answer. Type an exact answer, using radicals as needed. Use integers or simplified fractions for any } \\ \text { numbers in the expression. Use a comma to separate answers as needed.) }\end{array}\right. \) \( \begin{array}{l}\text { a }\end{array} \)

Ask by Munoz Savage. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct process is option A: \( x^{2}-\frac{5}{2}x-\frac{39}{16}=0 \Rightarrow x^{2}-\frac{5}{2}x=\frac{39}{16} \Rightarrow x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{39}{16}+\frac{25}{16} \) The solutions are \( x = -\frac{3}{4} \) and \( x = \frac{13}{4} \).

Solución

Solve the equation \( x^{2}-\frac{5}{2}x-\frac{39}{16}=0 \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(x^{2}-\frac{5}{2}x-\frac{39}{16}=0\) - step1: Factor the expression: \(\frac{1}{16}\left(4x-13\right)\left(4x+3\right)=0\) - step2: Divide the terms: \(\left(4x-13\right)\left(4x+3\right)=0\) - step3: Separate into possible cases: \(\begin{align}&4x-13=0\\&4x+3=0\end{align}\) - step4: Solve the equation: \(\begin{align}&x=\frac{13}{4}\\&x=-\frac{3}{4}\end{align}\) - step5: Rewrite: \(x_{1}=-\frac{3}{4},x_{2}=\frac{13}{4}\) The solutions to the equation \(x^{2}-\frac{5}{2}x-\frac{39}{16}=0\) by completing the square are \(x_{1}=-\frac{3}{4}\) and \(x_{2}=\frac{13}{4}\). Therefore, the correct process for rearranging the equation before completing the square is: \( x^{2}-\frac{5}{2}x-\frac{39}{16}=0 \Rightarrow x^{2}-\frac{5}{2}x=\frac{39}{16} \Rightarrow x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{39}{16}+\frac{25}{16} \) This corresponds to option A. The solution set is \( \left\{-\frac{3}{4}, \frac{13}{4}\right\} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this equation by completing the square, we need to first isolate the \(x^2\) terms on one side. The equation starts as \(x^{2} - \frac{5}{2} x - \frac{39}{16} = 0\). Choosing option A is the way to go—this option correctly rearranges the equation and prepares for the completion of the square. Once we add \(\frac{25}{16}\) to both sides, we convert our equation to \((x - \frac{5}{4})^2 = \text{something}\). After completing the square and simplifying, the next step is to square root both sides, leading to two potential solutions for \(x\). Don’t forget to consider both the positive and negative square roots! Now, once you finish solving the equation using your selected path, double-check the found solutions by substituting them back into the original equation. This ensures no calculation errors crept in during the process!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad