24) If \( z_{1} \) and \( z_{2} \) are two independent S.N.Vs then name the distribution of \( \left(z_{1}^{2}-z_{2}^{2}\right) \) and write its mean.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
The distribution of \( z_{1}^{2} - z_{2}^{2} \) follows a standard form known as the standard normal distribution. Specifically, this is related to the difference of two chi-squared variables, which can result in the Laplace distribution when combined appropriately. As for its mean, since both \( z_{1} \) and \( z_{2} \) are standard normal variables (having a mean of 0), the mean of \( z_{1}^{2} - z_{2}^{2} \) simplifies to the difference of their means. Thus, the mean of \( z_{1}^{2} - z_{2}^{2} \) is 0.