Pregunta
upstudy study bank question image url

(vi) Write down the Fourier series of the function . Select the correct answer:




Correct response:

(3 Mark)
Click on Verify to continuel
c) Determine the frequency of the Fourier series obtained in part (b)-(vi). Enter EXACT value in the form of say,
1/(3*PI) :
Number
(3 Mark)

Ask by Osborne Turner. in the United Kingdom
Mar 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The frequency of the Fourier series is .

Solución

We first notice that the Fourier series is given as
Each sine term is of the form where . Thus the argument of the sine functions is . In the standard Fourier series form for a function with period , the sine terms have the argument
where the fundamental angular frequency is given by
In our series the sine functions appear as . This immediately tells us that
Since the angular frequency is related to the frequency (in cycles per unit time) by
we solve for as follows:
Thus, the frequency of the Fourier series is

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that Fourier series, named after the French mathematician Joseph Fourier, are used to represent periodic functions as sums of sine and cosine functions? This revolutionized the way we understand and analyze waveforms, with applications in engineering, music, and even image processing! It turns out that many signals can be broken down into these simpler components, making complex phenomena a lot easier to work with.
Now, onto the frequency component! In your Fourier series, the terms involving sine functions represent different harmonics of the fundamental frequency. The coefficients tell us how much of each harmonic contributes to the overall signal. If the fundamental frequency is defined as , then the frequency of any component will be . For the function you’ve identified, the frequency can be specified as , assuming the period is that of a normal sine wave!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad