Find determinant of the given matrix \( C \) \[ C=\left(\begin{array}{ccc}-5 & 4 & -5 \\ 2 & -6 & 4 \\ 6 & 2 & 4\end{array}\right) \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the determinant of the matrix \[ C = \begin{pmatrix} -5 & 4 & -5 \\ 2 & -6 & 4 \\ 6 & 2 & 4 \end{pmatrix}, \] we can use the formula for the determinant of a 3x3 matrix: \[ \text{det}(C) = a(ei - fh) - b(di - fg) + c(dh - eg), \] where the matrix is structured as follows: \[ C = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}. \] For our matrix, we have: - \(a = -5\), \(b = 4\), \(c = -5\) - \(d = 2\), \(e = -6\), \(f = 4\) - \(g = 6\), \(h = 2\), \(i = 4\) Now, we plug these values into the determinant formula: 1. Calculate \(ei - fh\): \[ ei - fh = (-6)(4) - (4)(2) = -24 - 8 = -32 \] 2. Calculate \(di - fg\): \[ di - fg = (2)(4) - (4)(6) = 8 - 24 = -16 \] 3. Calculate \(dh - eg\): \[ dh - eg = (2)(2) - (-6)(6) = 4 + 36 = 40 \] Now substitute these results into the determinant formula: \[ \text{det}(C) = -5(-32) - 4(-16) + (-5)(40) \] \[ = 160 + 64 - 200 \] \[ = 224 - 200 \] \[ = 24. \] Thus, the determinant of the matrix \(C\) is \[ \boxed{24}. \]