\( \begin{array}{ll}53 \div 10=5 \text { r } 3 & \text { b) } 750 \div 100=7 \times 50 \\ 62 \div 10=\ldots \ldots \ldots & 206 \div 100=\ldots \ldots \ldots \\ 95 \div 10=\ldots \ldots \ldots & 942 \div 100=\ldots \ldots \ldots \\ 102 \div 10=10 r 2 & \text { e) } 6280 \div 100=62 \times 80 \\ 372 \div 10=\ldots \ldots \ldots & 4972 \div 100=\ldots \ldots \ldots \\ 784 \div 10=\ldots \ldots \ldots & 9403 \div 100=\ldots \ldots \ldots\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
When dividing by 10 or 100, you're essentially looking to separate the number into a whole number and a remainder. For example, when you divide 62 by 10, you get 6 as the whole number (since 10 goes into 62 six times) and a remainder of 2 (because 62 - 60 = 2). Similarly, when dividing 206 by 100, you get 2 as the whole number with a remainder of 6. That’s the beauty of division! It's easy to make mistakes with remainders, especially when the numbers are larger. Use estimation to prevent errors before doing the calculations. For example, in 372 divided by 10, you can round it down to 370 to quickly find that it should be close to 37.2 (which will give you a change in the whole number figure). This approach keeps you sharp and helps you avoid minor miscalculations!