Pregunta
1. Simplify: \( -7 a^{2} b-2 a^{2} b \) A. -9 B. \( -9 a^{2} b \) C. \( -5 a^{2} b \) D. -5 3. Simnlifi.
Ask by Harris Ford. in the United States
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified expression is \( -9 a^{2} b \).
Solución
Simplify the expression by following steps:
- step0: Solution:
\(-7a^{2}b-2a^{2}b\)
- step1: Collect like terms:
\(\left(-7-2\right)a^{2}b\)
- step2: Subtract the numbers:
\(-9a^{2}b\)
To simplify the expression \( -7 a^{2} b - 2 a^{2} b \), we can follow these steps:
1. **Identify like terms**: Both terms, \( -7 a^{2} b \) and \( -2 a^{2} b \), have the same variable factors \( a^{2} b \).
2. **Combine the coefficients**:
\[
-7 + (-2) = -9
\]
3. **Write the simplified expression**:
\[
-9 a^{2} b
\]
Thus, the simplified expression is \( -9 a^{2} b \).
The correct answer is **B. \( -9 a^{2} b \)**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
When simplifying \( -7 a^{2} b - 2 a^{2} b \), you combine like terms. Both terms have \( a^2b \) in common, so you simply add the coefficients: \( -7 - 2 = -9 \). Thus, the expression simplifies to \( -9 a^{2} b \). In situations where you're dealing with algebraic expressions, always ensure that you combine like terms efficiently. A common mistake is forgetting to align variables properly or miscalculating coefficients. Keeping a clear structure helps immensely!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium