Pregunta

Find the region’s area that is enclosed by the curves and .

Ask by Johnson Pollard. in Barbados
Jan 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The area enclosed by the curves and is .

Solución

To find the area enclosed by the curves and , follow these steps:

1. Find the Points of Intersection

Set the two equations equal to each other to find the points where the curves intersect:
Rearrange the equation:
So, the roots are:
Therefore, the points of intersection are:

2. Determine Which Function is on Top

To determine which function is above the other between the points of intersection, pick test points in each interval.
  • Between and :
    Choose :
    Here, .
  • Between and :
    Choose :
    Here, .

3. Set Up the Integral

The total area is the sum of the areas between the curves in each interval:

4. Calculate the Integral

After simplifying and evaluating the integrals, we find:

Final Answer

The area enclosed by the curves is .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the area enclosed by the curves and , we first need to determine the points of intersection. Setting the equations equal to each other gives:
Rearranging this equation results in:
Thus, one solution is . To find the other solutions, we’ll factor the quadratic using the quadratic formula:
The intersections are at:
Only is relevant for our area calculation, as it represents a positive -value.
Now, we calculate the area between the curves from to . The area is given by:
This simplifies to:
Now, we compute the integral:
Evaluating this at the bounds:
  1. Calculating at the upper bound :
  2. All these lead to a computation which provides the total area.
Calculating ultimately gives us the area, which can be numerically evaluated to yield a precise result. The final area turns out to be:
This gives you the complete calculation of the area enclosed by the two curves.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad