Pregunta
upstudy study bank question image url

The product-exchange function for gasoline \( x \) and heating oil \( y \), in hundreds of gallons per day, is shown below. \( y=\frac{170,000-140 x}{170+2 x} \) Sketch the portion of the function in Quadrant I of the graph, and then find the x-intercept and \( y \)-intercept in order to estimate the maximum quantities of each product that can be produced. What is the maximum quantity of heating oil that can be produced? What is the maximum quantity of gasoline that can be produced? (Round to the nearest whole number as needed.) (Round to the nearest whole number as needed.)

Ask by Bradley Barker. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The maximum quantity of heating oil that can be produced is 100,000 gallons per day, and the maximum quantity of gasoline that can be produced is 121,400 gallons per day.

Solución

To determine the maximum quantities of heating oil and gasoline that can be produced, we'll analyze the given product-exchange function: \[ y = \frac{170,000 - 140x}{170 + 2x} \] Here: - \( x \) represents gasoline in **hundreds of gallons per day**. - \( y \) represents heating oil in **hundreds of gallons per day**. ### 1. **Finding the \( y \)-Intercept (Maximum Heating Oil)** The \( y \)-intercept occurs when \( x = 0 \): \[ y = \frac{170,000 - 140(0)}{170 + 2(0)} = \frac{170,000}{170} = 1,000 \] **Interpretation:** - **Maximum Heating Oil**: \( y = 1,000 \) hundreds of gallons per day. - **Total:** \( 1,000 \times 100 = 100,000 \) gallons per day. ### 2. **Finding the \( x \)-Intercept (Maximum Gasoline)** The \( x \)-intercept occurs when \( y = 0 \): \[ 0 = \frac{170,000 - 140x}{170 + 2x} \] Solving for \( x \): \[ 170,000 - 140x = 0 \\ 140x = 170,000 \\ x = \frac{170,000}{140} \approx 1,214.29 \] **Interpretation:** - **Maximum Gasoline**: \( x \approx 1,214 \) hundreds of gallons per day (rounded to the nearest whole number). - **Total:** \( 1,214 \times 100 = 121,400 \) gallons per day. ### 3. **Summary of Maximum Quantities** - **Maximum Heating Oil Produced:** **100,000 gallons per day** - **Maximum Gasoline Produced:** **121,400 gallons per day** ### 4. **Graphical Representation** To sketch the portion of the function in Quadrant I: - **Plot the \( y \)-intercept** at \( (0, 1,000) \). - **Plot the \( x \)-intercept** at \( (1,214, 0) \). - **Draw the curve** that approaches these intercepts, ensuring it remains in Quadrant I (i.e., both \( x \) and \( y \) are positive). ![Graph of y = (170000 - 140x)/(170 + 2x)](https://i.imgur.com/yourGraphLink.png) *(Note: Replace with an actual graph if needed.)* ### **Final Answers:** - **Maximum Heating Oil:** 100 000 gallons per day - **Maximum Gasoline:** 121 400 gallons per day

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the x-intercept, set \( y = 0 \) in the equation: \[ 0 = \frac{170,000 - 140x}{170 + 2x} \] This simplifies to: \[ 170,000 - 140x = 0 \\ 140x = 170,000 \\ x = \frac{170,000}{140} \approx 1214.29 \] Rounding to the nearest whole number, the x-intercept is approximately \( 1214 \) (in hundreds of gallons, that's \( 121,400 \) gallons of gasoline). Next, to find the y-intercept, set \( x = 0 \): \[ y = \frac{170,000 - 140(0)}{170 + 2(0)} = \frac{170,000}{170} = 1000 \] So, the y-intercept is \( 1000 \) (in hundreds of gallons, that's \( 100,000 \) gallons of heating oil). In summary, the maximum quantity of heating oil that can be produced is \( 100,000 \) gallons, and the maximum quantity of gasoline that can be produced is \( 121,400 \) gallons.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad