\begin{tabular}{|l|l|}\hline 14) Evaluate each function for the given input values. \\ For \( f(x)=5 x+1 \), find \( f(x) \) when \( x=2 \) and when \( x=3 \). \\ 16) Write the equation that describes the line in slope- \end{tabular}
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To evaluate the function \( f(x) = 5x + 1 \) for the inputs \( x = 2 \) and \( x = 3 \), simply substitute \( x \) into the equation. For \( x = 2 \), \( f(2) = 5(2) + 1 = 10 + 1 = 11 \). For \( x = 3 \), \( f(3) = 5(3) + 1 = 15 + 1 = 16 \). So, \( f(2) = 11 \) and \( f(3) = 16 \). Now, when writing the equation for a line in slope-intercept form, remember that it follows the format \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept. If you want to create an equation, simply determine your slope and where the line crosses the y-axis, and you're ready to go!