Pregunta
upstudy study bank question image url

Algebral \( \begin{array}{l}\text { hich values of } x \text { would be part of the solution set for } 3 x+10<2(5 x-2) \\ 0-10 \\ 02 \\ 0 \\ 0\end{array} \)

Ask by Burgess Salinas. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Any value of \( x \) greater than 2 is part of the solution set.

Solución

To determine which values of \( x \) satisfy the inequality: \[ 3x + 10 < 2(5x - 2) \] Let's solve the inequality step by step. ### Step 1: Expand the Right Side First, distribute the 2 on the right side: \[ 3x + 10 < 10x - 4 \] ### Step 2: Bring Like Terms Together Subtract \( 3x \) from both sides to gather the \( x \)-terms on one side: \[ 10 < 7x - 4 \] Next, add 4 to both sides to isolate the term with \( x \): \[ 14 < 7x \] ### Step 3: Solve for \( x \) Divide both sides by 7 to solve for \( x \): \[ 2 < x \] Or equivalently: \[ x > 2 \] ### Conclusion The solution set consists of all real numbers greater than 2. **Therefore, any value of \( x \) where \( x > 2 \) is part of the solution set.** If we consider the options provided: - **-10**: Not greater than 2. ❌ - **0-10**: Includes values greater than 2 (specifically from 2 to 10). ✅ - **02**: Assuming this is a typo and meant to be 2, it's the boundary value. ❌ (since \( x \) must be greater than 2, not equal to 2) - **0**: Not greater than 2. ❌ **Correct Option:** \( 0-10 \) (assuming it represents values between 2 and 10)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the inequality \( 3x + 10 < 2(5x - 2) \), first, simplify the right side: \( 2(5x - 2) = 10x - 4 \). So, the inequality becomes \( 3x + 10 < 10x - 4 \). Next, subtract \( 3x \) from both sides to get \( 10 < 7x - 4 \). Then add 4 to both sides to find \( 14 < 7x \), which simplifies to \( 2 < x \) or \( x > 2 \). Hence, any \( x \) greater than 2 is part of the solution set! Now, let's check for common mistakes! One frequent pitfall is forgetting to distribute when you see parentheses. It's also easy to lose track of the inequality direction—though you didn’t have to flip it in this problem, always keep an eye on that when multiplying or dividing by negative numbers!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad