Pregunta
upstudy study bank question image url

\( \$ 1000 \) are deposited in an account with a \( 8.5 \% \) interest rate, compounded continuously. What is the balance after 5 years? Begin by entering \( P \), or the principal (initial investment). \( P=\$[?] \)

Ask by Smith Gonzalez. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The balance after 5 years is approximately \$1,529.59.

Solución

To find the balance after 5 years with continuous compounding, we can use the formula for continuous compounding: \[ A = P \times e^{rt} \] where: - \( A \) is the balance after \( t \) years, - \( P \) is the principal (initial investment), - \( r \) is the interest rate, - \( t \) is the time in years, - \( e \) is the base of the natural logarithm. Given: - Principal (initial investment) \( P = \$1000 \), - Interest rate \( r = 8.5\% = 0.085 \), - Time \( t = 5 \) years. Substitute the values into the formula: \[ A = 1000 \times e^{0.085 \times 5} \] Now, we can calculate the balance after 5 years. Calculate the value by following steps: - step0: Calculate: \(1000e^{0.085\times 5}\) - step1: Multiply the numbers: \(1000e^{0.425}\) - step2: Convert the expressions: \(1000e^{\frac{17}{40}}\) - step3: Rewrite the expression: \(1000\sqrt[40]{e^{17}}\) The balance after 5 years with continuous compounding is approximately $1529.59.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the balance after 5 years with continuous compounding, we use the formula \( A = Pe^{rt} \), where \( A \) is the amount of money accumulated after time \( t \), \( P \) is the principal amount, \( r \) is the annual interest rate (in decimal), and \( t \) is the time in years. Given that \( P = 1000 \), \( r = 0.085 \), and \( t = 5 \): 1. Calculate \( A = 1000 \times e^{(0.085 \times 5)} \). 2. Use an approximate value for \( e \), which is about 2.71828. 3. Calculate \( 0.085 \times 5 = 0.425 \). 4. So, \( A \approx 1000 \times e^{0.425} \). Now, after calculating \( e^{0.425} \approx 1.5288 \): 5. Finally, \( A \approx 1000 \times 1.5288 \approx 1528.80 \). Therefore, the balance after 5 years is approximately \( A \approx \$1528.80 \).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad