A tank holds 120 liters of a chemical solution. Currently, the solution has a strength of \( 70 \% \). How much of this should be drained and replaced with \( 100 \% \) solution to get a final strength of \( 90 \% \) ? How many liters should be drained and replaced with \( 100 \% \) solution? liters
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve this problem, we can set up an equation based on the concentrations. Let's say we drain \( x \) liters from the tank. After draining \( x \) liters, the solution will have \( 120 - x \) liters remaining, and the total amount of the chemical left in the tank will be \( 0.7 \times (120 - x) \) liters. Once we refill the tank with \( x \) liters of \( 100\% \) solution, the total chemical solution in the tank will be \( 0.7 \times (120 - x) + x \) liters. The total volume of the solution remains 120 liters, and we want the final concentration to be \( 90\% \). We can set up the following equation: \[ 0.7(120 - x) + x = 0.9 \times 120 \] Now, simplifying: \[ 84 - 0.7x + x = 108 \\ 0.3x = 24 \\ x = 80 \] So, you should drain and replace **80 liters** of the solution to achieve a final strength of **90%**.