Pregunta
upstudy study bank question image url

Consider the velocity function \( v(t)=2 \sin t \) for \( 0 \leq t \leq \pi \). Complete the sentence: The same distance could have been traveled over the given time period at a constant velocity of The same distance could have been traveled over the given time period at a constant velocity of \( \square \). (Type an exact answer in terms of \( \pi \).)

Ask by Zimmerman Marshall. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The same distance could have been traveled over the given time period at a constant velocity of \( \frac{4}{\pi} \).

Solución

To find the constant velocity that results in the same distance traveled over the time interval \( 0 \leq t \leq \pi \), follow these steps: 1. **Calculate the Total Distance Traveled:** The velocity function is \( v(t) = 2 \sin t \). Since \( \sin t \) is non-negative over \( [0, \pi] \), the distance traveled is the integral of the velocity: \[ \text{Distance} = \int_{0}^{\pi} 2 \sin t \, dt = 2 \left[ -\cos t \right]_{0}^{\pi} = 2 \left( -\cos \pi + \cos 0 \right) = 2 (1 + 1) = 4 \] 2. **Determine the Time Interval:** The total time is \( \pi - 0 = \pi \). 3. **Find the Equivalent Constant Velocity:** To find the constant velocity \( v_{\text{constant}} \) that covers the same distance in the same time: \[ v_{\text{constant}} = \frac{\text{Distance}}{\text{Time}} = \frac{4}{\pi} \] **Final Answer:** \(\displaystyle \frac{4}{\pi}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the constant velocity that would cover the same distance as the velocity function \( v(t) = 2 \sin t \) over the interval from \( 0 \) to \( \pi \), we first need to calculate the total distance traveled. The distance \( d \) is given by the integral of the velocity function from \( 0 \) to \( \pi \): \[ d = \int_{0}^{\pi} v(t) \, dt = \int_{0}^{\pi} 2 \sin t \, dt. \] Calculating this integral: \[ d = 2 \int_{0}^{\pi} \sin t \, dt. \] The integral of \( \sin t \) is \( -\cos t \), so we evaluate: \[ \int_{0}^{\pi} \sin t \, dt = [-\cos t]_{0}^{\pi} = -\cos(\pi) - (-\cos(0)) = -(-1) - (-1) = 1 + 1 = 2. \] Thus, the distance is: \[ d = 2 \cdot 2 = 4. \] Now, to find the constant velocity that would cover this distance over the time interval from \( 0 \) to \( \pi \) (which has a duration of \( \pi \)), we use the formula for constant velocity: \[ v_{\text{constant}} = \frac{\text{distance}}{\text{time}} = \frac{4}{\pi}. \] Therefore, the same distance could have been traveled over the given time period at a constant velocity of \( \frac{4}{\pi} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad