Pregunta
upstudy study bank question image url

6. [8 points] A rectangular room is completely tiled by 1 -foot square tiles. All the tiles adjacent to a door or wall are purple, and the rest of the tiles are white. If exactly \( \frac{2}{7} \) of the tiles are purple, then what is the smallest possible area of the room, in square feet?

Ask by Huff French. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The smallest possible area of the room is 168 square feet.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

Let the area of the room be denoted as \( A \) square feet, which is equal to the total number of tiles in the room since each tile covers 1 square foot. According to the problem, \( \frac{2}{7} \) of the tiles are purple. Therefore, the number of purple tiles can be expressed as: \[ \text{Number of purple tiles} = \frac{2}{7}A \] Since the tiles that are not purple are white, the number of white tiles would be: \[ \text{Number of white tiles} = A - \frac{2}{7}A = \frac{5}{7}A \] Given that \( A \) must be a multiple of both 7 (to ensure that \( \frac{2}{7}A \) is an integer) and the fact that the number of tiles adjacent to walls or doors must correlate to the dimensions of the rectangle, we can find the smallest \( A \) that satisfies this condition. Let \( A = nm \), where \( n \) and \( m \) are the dimensions of the room in terms of tiles. The number of tiles adjacent to the walls (purple tiles) can be calculated as: \[ \text{Purple tiles} = 2n + 2m - 4 \] This represents all the tiles in the first and last rows (2n), and the first and last columns (2m), with 4 tiles counted twice at the corners. Setting up the equation where the number of purple tiles equals \( \frac{2}{7}A \): \[ 2n + 2m - 4 = \frac{2}{7}(nm) \] Multiplying through by 7 to eliminate the fraction gives: \[ 7(2n + 2m - 4) = 2nm \] This simplifies to: \[ 14n + 14m - 28 = 2nm \] Rearranging this leads us to: \[ 2nm - 14n - 14m + 28 = 0 \] Factoring or rearranging further gives us the quadratic in standard form: \[ nm - 7n - 7m + 14 = 0 \] Now we can rearrange it to factor: \[ (n-7)(m-7) = 49 \] The positive divisors of 49 (which will give us pairs \( (n-7, m-7) \)) include \( (1, 49), (7, 7), (49, 1) \). Calculating the values of \( n \) and \( m \): 1. For \( (1, 49) \): \[ n = 8, \, m = 56 \quad \Rightarrow \quad A = 8 \times 56 = 448 \] 2. For \( (7, 7) \): \[ n = 14, \, m = 14 \quad \Rightarrow \quad A = 14 \times 14 = 196 \] 3. For \( (49, 1) \): \[ n = 56, \, m = 8 \quad \Rightarrow \quad A = 56 \times 8 = 448 \] From the calculations above, the smallest area occurs when \( n = m = 14 \), yielding: \[ A = 196 \text{ square feet} \] Thus, the smallest possible area of the room is \[ \boxed{196} \text{ square feet}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad