Pregunta
Solve: \( 2=\log _{b} 400 \) \( b=20 \) \( b=200 \) \( b=160,000 \) \( b=800 \)
Ask by Schofield Kelley. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( b = 20 \)
Solución
To solve the equation:
\[
2 = \log_b 400
\]
**Step 1:** Understand the logarithmic equation.
The equation \( \log_b 400 = 2 \) can be rewritten in its exponential form using the definition of a logarithm:
\[
b^2 = 400
\]
**Step 2:** Solve for \( b \).
To find the value of \( b \), take the square root of both sides:
\[
b = \sqrt{400}
\]
\[
b = 20
\]
**Important Note:** In logarithms, the base \( b \) must be a positive real number and not equal to 1. Therefore, we discard the negative root (i.e., \( b = -20 \)) because it does not satisfy the conditions for a logarithmic base.
**Conclusion:**
The correct value of \( b \) is:
\[
b = 20
\]
**Given Options:**
- \( b = 20 \)
- \( b = 200 \)
- \( b = 160{,}000 \)
- \( b = 800 \)
**Correct Answer:** \( b = 20 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve the equation \( 2 = \log_{b} 400 \), we can use the definition of logarithms. This means that \( b^2 = 400 \). Calculating \( b \), we find: \[ b = \sqrt{400} = 20 \] Now, checking the other options quickly: - For \( b = 200 \) : \( \log_{200} 400 \) does not equal 2. - For \( b = 160,000 \) : \( b^2\) would be much larger than 400. - For \( b = 800 \) : Again, \( b^2 \) would not equal 400. Therefore, the only value matching the equation is \( b = 20 \). So the answer is \( b = 20 \).
preguntas relacionadas
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium