If each of the following sequences is either arithmetic or geometric, continue the decimal patterns below. a. \( 0.4,2.3,4.2,6.1 \), b. \( 5,2.5,1.25,0.625 \), Fill in the blanks below. a. \( 0.4,2.3,4.2,6.1,8.0,9.9,11.8 \) (Type integers or decimals. Simplify your answers.) b. \( 5,2.5,1.25,0.625, \square . \square . \square \) (Type integers or decimals. Simplify your answers.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
The first sequence is an arithmetic sequence, where each term increases by \(1.9\). If we keep adding \(1.9\) to \(11.8\), we get \(13.7\) next, and continuing that leads us to \(15.6\) and \(17.5\). So, the complete sequence is \(0.4,2.3,4.2,6.1,8.0,9.9,11.8,13.7,15.6,17.5\). The second sequence is a geometric sequence where each term is multiplied by \(0.5\). This means we take \(0.625\) and multiply it by \(0.5\) to get \(0.3125\), and then multiply again by \(0.5\) to arrive at \(0.15625\) followed by \(0.078125\). Thus, the full sequence is \(5,2.5,1.25,0.625,0.3125,0.15625,0.078125\).