Pregunta
Calculate the ratio of
.
If
is a point on
such that
, calculate the ratio of
.
If it is further given that the gradient of
is -4 and the length of
units, calculate the coordinates of
.
If
If it is further given that the gradient of
Ask by Powers Mcguire. in South Africa
Mar 24,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
To find the coordinates of point
, given that the gradient of
is -4 and the length of
is
units, follow these steps:
-
Determine the length of
: So, the length isunits. -
Use the gradient to find the relationship between the coordinates:
The gradient (slope) ofis -4, which means: Let’s assumeis at and is at . Then: -
Apply the distance formula:Substitute
: So,. -
Find
: -
Coordinates of
:
Since we assumedis at , the coordinates of are . -
Coordinates of
:
Summary:
- Coordinates of
: - Coordinates of
:
If
is not at the origin, adjust the coordinates accordingly based on the given information.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
The Deep Dive
To find the ratio
, we can use the fact that
implies
and
are similar triangles. The ratio of their areas is equal to the square of the ratio of their corresponding sides.
Now, with the gradient of
being -4, we can denote point
as
and point
as
. The formula for the gradient (slope) is derived from the difference in y-coordinates over the difference in x-coordinates:
Given that the length of
, we can find the coordinates of
if we set
to (0, 0) (just for simplicity). Then,
can be calculated using the length formula:
Substituting
with
yields the quadratic equation, from which the coordinates of
can then be calculated.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium