Suppose a city with population 100,000 has been growing at a rate of \( 6 \% \) per year. If this rate continues, find the population of this city in 25 years. The population in 25 years will be approximately \( \square \). (Round to the nearest whole number as needed.) \( 26=11: 59 \mathrm{pm} \) Thes
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the population of the city after 25 years, we can use the formula for exponential growth: \[ P = P_0 (1 + r)^t \] Where: - \( P_0 \) is the initial population (100,000), - \( r \) is the growth rate (6% or 0.06), - \( t \) is the time in years (25). Plugging in the values: \[ P = 100,000 (1 + 0.06)^{25} \] \[ P = 100,000 (1.06)^{25} \] Calculating \( (1.06)^{25} \) gives approximately 4.29187. Therefore: \[ P \approx 100,000 \times 4.29187 \] \[ P \approx 429,187 \] So, the population in 25 years will be approximately \( 429,187 \).