Suppose that you borrow \( \$ 1000.00 \) from a friend and promise to pay back \( \$ 1975.00 \) in 5 years. What simple interest rate will you pay? The simple interest rate is \( \square \% \) (Round to the nearest tenth as needed.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the simple interest rate, we can use the formula for simple interest: \[ I = P \times r \times t \] Where: - \( I \) is the interest paid, - \( P \) is the principal amount (the initial amount borrowed), - \( r \) is the interest rate (as a decimal), - \( t \) is the time in years. Here, the total amount to be paid back is \( \$ 1975.00 \), so the interest \( I \) is: \[ I = 1975 - 1000 = 975 \] We were given \( P = 1000 \) and \( t = 5 \). Plugging into the formula gives us: \[ 975 = 1000 \times r \times 5 \] Solving for \( r \): \[ r = \frac{975}{1000 \times 5} = \frac{975}{5000} = 0.195 \] To convert \( r \) into a percentage, multiply by 100: \[ r = 0.195 \times 100 = 19.5\% \] So, the simple interest rate you will pay is \( 19.5\% \).