Pregunta
upstudy study bank question image url

28. \( p(x)=36 x^{4}+36 x^{3}-153 x^{2}-81 x+162 \)

Ask by Fernandez Todd. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The polynomial \( p(x) = 36x^{4} + 36x^{3} - 153x^{2} - 81x + 162 \) factors completely as: \[ p(x) = 9(2x - 3)(2x + 3)(x + 2)(x - 1) \]

Solución

To factor the polynomial \( p(x) = 36x^{4} + 36x^{3} - 153x^{2} - 81x + 162 \), let's follow a systematic approach: ### Step 1: Factor Out the Greatest Common Factor (GCF) First, identify the GCF of all the coefficients: - Coefficients: 36, 36, -153, -81, 162 - GCF is **9** So, factor out 9: \[ p(x) = 9 \left(4x^4 + 4x^3 - 17x^2 - 9x + 18\right) \] ### Step 2: Factor the Quartic Polynomial Next, factor the quartic polynomial \( 4x^4 + 4x^3 - 17x^2 - 9x + 18 \). We look to express it as a product of two quadratic polynomials: \[ (4x^2 + ax + b)(x^2 + cx + d) = 4x^4 + 4x^3 - 17x^2 - 9x + 18 \] Expanding the left side and equating coefficients gives us a system of equations: \[ \begin{cases} 4c + a = 4 & \text{(Coefficient of } x^3) \\ 4d + ac + b = -17 & \text{(Coefficient of } x^2) \\ ad + bc = -9 & \text{(Coefficient of } x) \\ bd = 18 & \text{(Constant term)} \end{cases} \] After testing possible integer values for \( b \) and \( d \) (since \( bd = 18 \)), we find that: - \( b = -9 \) and \( d = -2 \) - Solving the system gives \( a = 0 \) and \( c = 1 \) So, the quartic factors as: \[ (4x^2 - 9)(x^2 + x - 2) \] ### Step 3: Factor Further Now, factor each quadratic: \[ 4x^2 - 9 = (2x - 3)(2x + 3) \quad \text{(Difference of squares)} \] \[ x^2 + x - 2 = (x + 2)(x - 1) \quad \text{(Factored by inspection)} \] ### Final Factored Form Combine all the factors: \[ p(x) = 9(2x - 3)(2x + 3)(x + 2)(x - 1) \] **Therefore, the fully factored form of the polynomial is:** \[ \boxed{p(x) = 9(2x - 3)(2x + 3)(x + 2)(x - 1)} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that polynomials like \( p(x) \) are foundational in both algebra and calculus? They can model various real-world phenomena, from the trajectory of a basketball to the growth patterns of certain organisms. Understanding the coefficients and exponents can help you grasp the behavior of the polynomial, making it easier to predict outputs for any given input! When working with polynomials, common mistakes include overlooking factoring opportunities or not identifying roots correctly. Always remember to check for common factors and use synthetic division when possible. This can simplify complex problems and save you a lot of time—plus, it’s like uncovering treasure hidden in the equation!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad