Responder
The polynomial \( p(x) = 36x^{4} + 36x^{3} - 153x^{2} - 81x + 162 \) factors completely as:
\[
p(x) = 9(2x - 3)(2x + 3)(x + 2)(x - 1)
\]
Solución
To factor the polynomial \( p(x) = 36x^{4} + 36x^{3} - 153x^{2} - 81x + 162 \), let's follow a systematic approach:
### Step 1: Factor Out the Greatest Common Factor (GCF)
First, identify the GCF of all the coefficients:
- Coefficients: 36, 36, -153, -81, 162
- GCF is **9**
So, factor out 9:
\[
p(x) = 9 \left(4x^4 + 4x^3 - 17x^2 - 9x + 18\right)
\]
### Step 2: Factor the Quartic Polynomial
Next, factor the quartic polynomial \( 4x^4 + 4x^3 - 17x^2 - 9x + 18 \). We look to express it as a product of two quadratic polynomials:
\[
(4x^2 + ax + b)(x^2 + cx + d) = 4x^4 + 4x^3 - 17x^2 - 9x + 18
\]
Expanding the left side and equating coefficients gives us a system of equations:
\[
\begin{cases}
4c + a = 4 & \text{(Coefficient of } x^3) \\
4d + ac + b = -17 & \text{(Coefficient of } x^2) \\
ad + bc = -9 & \text{(Coefficient of } x) \\
bd = 18 & \text{(Constant term)}
\end{cases}
\]
After testing possible integer values for \( b \) and \( d \) (since \( bd = 18 \)), we find that:
- \( b = -9 \) and \( d = -2 \)
- Solving the system gives \( a = 0 \) and \( c = 1 \)
So, the quartic factors as:
\[
(4x^2 - 9)(x^2 + x - 2)
\]
### Step 3: Factor Further
Now, factor each quadratic:
\[
4x^2 - 9 = (2x - 3)(2x + 3) \quad \text{(Difference of squares)}
\]
\[
x^2 + x - 2 = (x + 2)(x - 1) \quad \text{(Factored by inspection)}
\]
### Final Factored Form
Combine all the factors:
\[
p(x) = 9(2x - 3)(2x + 3)(x + 2)(x - 1)
\]
**Therefore, the fully factored form of the polynomial is:**
\[
\boxed{p(x) = 9(2x - 3)(2x + 3)(x + 2)(x - 1)}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución