Pregunta
upstudy study bank question image url

Question 5: A straight line passes through \( (2,5) \) and has a gradient of -4 . The equation of the line is:

Ask by Hill Carter. in Australia
Jan 17,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the line is \( y = -4x + 13 \).

Solución

To find the equation of a straight line that passes through the point \( (2, 5) \) with a gradient (slope) of \(-4\), we can use the **point-slope form** of a linear equation. The point-slope form is given by: \[ y - y_1 = m(x - x_1) \] Where: - \( m \) is the slope of the line. - \( (x_1, y_1) \) is a point on the line. **Given:** - Slope (\( m \)) = \(-4\) - Point (\( x_1, y_1 \)) = \( (2, 5) \) **Step 1: Plug the known values into the point-slope form** \[ y - 5 = -4(x - 2) \] **Step 2: Distribute the slope on the right-hand side** \[ y - 5 = -4x + 8 \] **Step 3: Solve for \( y \) to get the slope-intercept form (\( y = mx + c \))** \[ y = -4x + 8 + 5 \] \[ y = -4x + 13 \] **Final Equation of the Line:** \[ \boxed{y = -4x + 13} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the equation of a line with a given point and gradient, you can use the point-slope form of the line equation, which is \( y - y_1 = m(x - x_1) \). Plugging in the point \( (2, 5) \) and the gradient \( m = -4 \), the equation becomes \( y - 5 = -4(x - 2) \). Simplifying this gives \( y = -4x + 8 + 5 \), which simplifies to \( y = -4x + 13 \). Now you have the equation of the line as \( y = -4x + 13 \). Happy graphing! Did you know that gradient, or slope, essentially indicates how steep a line is? A negative gradient means the line descends from left to right – like a slide down the playground! This simple concept lays the groundwork for understanding multiple mathematical scenarios, from economics to physics. Funny enough, a common mistake when dealing with line equations is mixing up the coordinates or the signs of the gradient. Double-checking your points and ensuring the slope is applied correctly can save you from those "oops" moments! Comparing your calculations visually on a graph can also help you catch any errors before they stick!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad