Pregunta
upstudy study bank question image url

The length of the longer leg of a right triangle is \( 22 \mathrm{ft} \mathrm{more} \mathrm{than} \mathrm{six} \mathrm{times} \mathrm{the} \mathrm{length} \mathrm{of} \mathrm{the} \mathrm{shorter} \mathrm{leg} \).The length of the hypotenuse is 23 ft more than six times the length of the shorter leg. Find the side lengths of the triangle. Length of the shorter leg: Length of the hypotenuse:

Ask by Herrera Lynch. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The shorter leg is 15 ft, the longer leg is 112 ft, and the hypotenuse is 113 ft.

Solución

Let's denote the length of the shorter leg as \( x \) and the length of the longer leg as \( y \). Given: 1. The length of the longer leg is \( 22 \) ft more than six times the length of the shorter leg: \[ y = 6x + 22 \] 2. The length of the hypotenuse is \( 23 \) ft more than six times the length of the shorter leg: \[ \text{Hypotenuse} = 6x + 23 \] We can use the Pythagorean theorem to find the side lengths of the triangle: \[ x^2 + y^2 = (\text{Hypotenuse})^2 \] Substitute the expressions for \( y \) and the hypotenuse into the Pythagorean theorem: \[ x^2 + (6x + 22)^2 = (6x + 23)^2 \] Now, we can solve this equation to find the value of \( x \), which will give us the length of the shorter leg. Once we have \( x \), we can find the length of the longer leg using the equation \( y = 6x + 22 \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(x^{2}+\left(6x+22\right)^{2}=\left(6x+23\right)^{2}\) - step1: Expand the expression: \(37x^{2}+264x+484=36x^{2}+276x+529\) - step2: Move the expression to the left side: \(x^{2}-12x-45=0\) - step3: Factor the expression: \(\left(x-15\right)\left(x+3\right)=0\) - step4: Separate into possible cases: \(\begin{align}&x-15=0\\&x+3=0\end{align}\) - step5: Solve the equation: \(\begin{align}&x=15\\&x=-3\end{align}\) - step6: Rewrite: \(x_{1}=-3,x_{2}=15\) The solutions to the equation are \( x = -3 \) and \( x = 15 \). Since the length of a side cannot be negative, we discard the solution \( x = -3 \). Therefore, the length of the shorter leg is \( x = 15 \) ft. Now, we can find the length of the longer leg using the equation \( y = 6x + 22 \): \[ y = 6(15) + 22 = 90 + 22 = 112 \] So, the side lengths of the triangle are: - Length of the shorter leg: 15 ft - Length of the longer leg: 112 ft - Length of the hypotenuse: 6(15) + 23 = 90 + 23 = 113 ft

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's set the length of the shorter leg as \( x \). According to the problem, the longer leg can be expressed as \( 6x + 22 \), and the hypotenuse can be expressed as \( 6x + 23 \). Using the Pythagorean theorem, we can set up the equation: \[ (6x + 22)^2 + x^2 = (6x + 23)^2 \] Expanding both sides gives us: \[ (36x^2 + 264x + 484) + x^2 = (36x^2 + 276x + 529) \] Combining like terms leads to: \[ 37x^2 + 264x + 484 = 36x^2 + 276x + 529 \] Subtracting \(36x^2 + 276x + 529\) from both sides results in: \[ x^2 - 12x - 45 = 0 \] Factoring gives us: \[ (x - 15)(x + 3) = 0 \] Thus, \( x = 15 \) (since length cannot be negative). This means the length of the shorter leg is \( 15 \, \text{ft} \). Now we can find the other lengths: - The longer leg: \( 6(15) + 22 = 90 + 22 = 112 \, \text{ft} \) - The hypotenuse: \( 6(15) + 23 = 90 + 23 = 113 \, \text{ft} \) So the side lengths of the triangle are: Length of the shorter leg: 15 ft Length of the hypotenuse: 113 ft

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad