Pregunta
upstudy study bank question image url

Find the greatest common factor for the group of numbers. \( 28,12,24 \)

Ask by Henry Burgess. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The greatest common factor of 28, 12, and 24 is 4.

Solución

To find the greatest common factor (GCF) of the numbers **28**, **12**, and **24**, you can use either the **prime factorization** method or the **Euclidean algorithm**. Here's how to do it using both methods: --- ### **Method 1: Prime Factorization** 1. **Factor each number into its prime factors:** - **28** = 2² × 7 - **12** = 2² × 3 - **24** = 2³ × 3 2. **Identify the common prime factors:** - The only common prime factor among all three numbers is **2**. 3. **Determine the smallest exponent for the common prime factor:** - The smallest exponent of **2** in the factorizations is **2** (from 28 and 12). 4. **Calculate the GCF:** - GCF = 2² = **4** --- ### **Method 2: Euclidean Algorithm** 1. **Find the GCF of two numbers first (e.g., 28 and 12):** - **28 ÷ 12 = 2** with a remainder of **4** - **12 ÷ 4 = 3** with a remainder of **0** - So, GCF(28, 12) = **4** 2. **Now, find the GCF of the result with the third number (4 and 24):** - **24 ÷ 4 = 6** with a remainder of **0** - So, GCF(4, 24) = **4** --- In both methods, the **greatest common factor** of **28**, **12**, and **24** is: **4**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the greatest common factor (GCF) of 28, 12, and 24, we first list out the factors of each number. The factors of 28 are: 1, 2, 4, 7, 14, 28. The factors of 12 are: 1, 2, 3, 4, 6, 12. The factors of 24 are: 1, 2, 3, 4, 6, 8, 12, 24. Now, we identify the common factors: 1, 2, 4. Among these, the greatest is 4. So, the GCF of 28, 12, and 24 is **4**. Understanding GCF can give you a powerful tool in math. It simplifies fractions, helps in solving problems involving ratios, and is especially handy when working with least common multiples in complex equations! If you’re ever struggling with GCF calculations, don’t fret—many people jump to using the prime factorization method! Breaking each number down into its prime factors can make it much easier to spot the common factors. Just remember to multiply those primes back together to find the GCF!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad