Which of the following expressions are equivalent to \( -\frac{8}{11}-\frac{3}{4}-\frac{1}{4} \) ? Choose 2 answers: A \( -\frac{8}{11}+\left(-\frac{3}{4}\right)+\left(-\frac{1}{4}\right) \) (B) \( \frac{3}{4}-\frac{8}{11}-\frac{1}{4} \) C \( -\frac{8}{11}-\left(-\frac{3}{4}\right)-\frac{1}{4} \) D \( \left(-\frac{1}{4}+\left(-\frac{3}{4}\right)\right)-\frac{8}{11} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To tackle the expression \( -\frac{8}{11}-\frac{3}{4}-\frac{1}{4} \), let's break it down! First, it's clear that adding negative fractions is equivalent to simply summing up all the negatives together. So, expressions that show this property correctly will be equivalent. Among the options, A \( -\frac{8}{11}+\left(-\frac{3}{4}\right)+\left(-\frac{1}{4}\right) \) and D \( \left(-\frac{1}{4}+\left(-\frac{3}{4}\right)\right)-\frac{8}{11} \) reflect the same sentiment — summing the negatives directly! Expressing addition with negatives and grouping terms can often help clarify calculations, but it also opens up a world of possibilities in algebraic manipulation. Math is like a puzzle; sometimes, rearranging pieces gives you clarity and makes it even more fun to play!