\( \$ 1000 \) are deposited in an account with \( 8.5 \% \) interest rate, compounded continuously. What is the balance after 5 years? \( \mathrm{P}=\$ 1000 \quad \mathrm{r}=0.085 \quad \mathrm{t}=5 \) \( \mathrm{~F}= \) Pe \( ^{r t} \quad \mathrm{~F}=\$[?] \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the balance after 5 years using continuous compounding, you can use the formula \( F = Pe^{rt} \). Here, \( P = 1000 \), \( r = 0.085 \), and \( t = 5 \). Plugging in these values gives: \[ F = 1000 \cdot e^{0.085 \cdot 5} \approx 1000 \cdot e^{0.425} \approx 1000 \cdot 1.528 \] So, the balance after 5 years is approximately \( \$1528.16 \). If you ever feel like your calculations are getting off track, remember that common mistakes include misplacing the decimal point or confusing compound and simple interest formulas! Always double-check your inputs to stay on the right financial path.