Pregunta
upstudy study bank question image url

Use the elimination method to solve the given system of equations. Write your answer as an ordered pair \( (x, y) \). \( \left\{\begin{array}{l}5 x-3 y=8 \\ 2 x+2 y=16\end{array}\right. \)

Ask by Coleman Chang. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is \( (4, 4) \).

Solución

To solve the given system of equations using the elimination method, follow these steps: \[ \begin{cases} 5x - 3y = 8 \quad \text{(Equation 1)} \\ 2x + 2y = 16 \quad \text{(Equation 2)} \end{cases} \] **Step 1: Make the coefficients of \( y \) opposites** To eliminate \( y \), we need the coefficients of \( y \) in both equations to be opposites. - Multiply Equation 1 by **2**: \[ 2 \times (5x - 3y) = 2 \times 8 \\ 10x - 6y = 16 \quad \text{(Equation 3)} \] - Multiply Equation 2 by **3**: \[ 3 \times (2x + 2y) = 3 \times 16 \\ 6x + 6y = 48 \quad \text{(Equation 4)} \] **Step 2: Add Equations 3 and 4** \[ (10x - 6y) + (6x + 6y) = 16 + 48 \\ 16x = 64 \] **Step 3: Solve for \( x \)** \[ x = \frac{64}{16} = 4 \] **Step 4: Substitute \( x = 4 \) into one of the original equations to find \( y \)** Using Equation 2: \[ 2x + 2y = 16 \\ 2(4) + 2y = 16 \\ 8 + 2y = 16 \\ 2y = 8 \\ y = 4 \] **Solution:** The solution to the system is the ordered pair \( (4, 4) \). \(\boxed{(4,\ 4)}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To use the elimination method, let's first align the equations: 1. \( 5x - 3y = 8 \) 2. \( 2x + 2y = 16 \) Next, we can multiply the second equation by 1.5 so that the coefficient of \( x \) in the second equation matches that in the first. This gives us: \( 1.5(2x + 2y) = 1.5(16) \) \( 3x + 3y = 24 \) Now we have the two equations: 1. \( 5x - 3y = 8 \) 2. \( 3x + 3y = 24 \) Next, we can add these two equations to eliminate \( y \): \[ 5x - 3y + 3x + 3y = 8 + 24 \] This simplifies to: \[ 8x = 32 \] Dividing both sides by 8 gives: \[ x = 4 \] Now that we have \( x \), let's substitute it back into one of the original equations to find \( y \). Using the second equation: \[ 2x + 2y = 16 \] Substituting \( x = 4 \): \[ 2(4) + 2y = 16 \] This simplifies to: \[ 8 + 2y = 16 \] Subtracting 8 from both sides gives: \[ 2y = 8 \] Dividing both sides by 2 gives: \[ y = 4 \] Thus, the solution to the system of equations is the ordered pair: \[ \boxed{(4, 4)} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad