Pregunta
upstudy study bank question image url

The first term of a geometric sequence is 3 and the sum of the second and third term is 60 . Determine the first three terms and the general term Th.

Ask by Davies King. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The first three terms are 3, 12, and 48. The general term is \( T_h = 3 \times 4^{h-1} \).

Solución

Let's determine the first three terms and the general term \( T_h \) of the geometric sequence. ### Given: - **First term (\( a \))**: 3 - **Sum of the second and third terms**: 60 ### Steps to Find the Common Ratio (\( r \)): 1. **Express the Second and Third Terms in Terms of \( r \):** - **Second term**: \( a \cdot r = 3r \) - **Third term**: \( a \cdot r^2 = 3r^2 \) 2. **Set Up the Equation Based on the Given Sum:** \[ 3r + 3r^2 = 60 \] 3. **Simplify the Equation:** \[ r + r^2 = 20 \quad \Rightarrow \quad r^2 + r - 20 = 0 \] 4. **Solve the Quadratic Equation for \( r \):** \[ r = \frac{-1 \pm \sqrt{1 + 80}}{2} = \frac{-1 \pm 9}{2} \] - **First solution**: \[ r = \frac{-1 + 9}{2} = 4 \] - **Second solution**: \[ r = \frac{-1 - 9}{2} = -5 \] ### Determining the Sequences: 1. **When \( r = 4 \):** - **First term**: 3 - **Second term**: \( 3 \times 4 = 12 \) - **Third term**: \( 3 \times 4^2 = 48 \) - **General term (\( T_h \))**: \[ T_h = 3 \times 4^{h-1} \] 2. **When \( r = -5 \):** - **First term**: 3 - **Second term**: \( 3 \times (-5) = -15 \) - **Third term**: \( 3 \times (-5)^2 = 75 \) - **General term (\( T_h \))**: \[ T_h = 3 \times (-5)^{h-1} \] ### **Final Answer:** There are two possible geometric sequences: 1. **With common ratio \( r = 4 \):** - **First three terms**: 3, 12, 48 - **General term**: \( T_h = 3 \times 4^{\,h-1} \) 2. **With common ratio \( r = -5 \):** - **First three terms**: 3, –15, 75 - **General term**: \( T_h = 3 \times (-5)^{\,h-1} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

In a geometric sequence, each term is found by multiplying the previous term by a common ratio, \( r \). Since the first term is 3, the second term will be \( 3r \) and the third term will be \( 3r^2 \). Given that the sum of the second and third terms is 60, we have: \[ 3r + 3r^2 = 60 \] Dividing through by 3 gives: \[ r + r^2 = 20 \] Rearranging leads to a quadratic equation: \[ r^2 + r - 20 = 0 \] Factoring the quadratic: \[ (r + 5)(r - 4) = 0 \] Thus, \( r = 4 \) (we disregard \( r = -5 \) since it's not a valid ratio for this context). Now, we can find the terms: - First term: \( 3 \) - Second term: \( 3r = 3 \times 4 = 12 \) - Third term: \( 3r^2 = 3 \times 16 = 48 \) So, the first three terms of the sequence are \( 3, 12, 48 \). The general term of a geometric sequence is given by: \[ T_n = ar^{n-1} \] where \( a \) is the first term and \( r \) is the common ratio. Thus, the general term in this case is: \[ T_n = 3 \times 4^{n-1} \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad