\( \int \sqrt[ 5 ] { r ^ { 4 } } d r = \square \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To tackle the integral \( \int \sqrt[5]{r^4} \, dr \), we can simplify the expression inside the integral. Recall that \( \sqrt[5]{r^4} = r^{\frac{4}{5}} \). So, we can rewrite the integral as \( \int r^{\frac{4}{5}} \, dr \). Now, applying the power rule for integrals, we have: \[ \int r^{\frac{4}{5}} \, dr = \frac{r^{\frac{4}{5} + 1}}{\frac{4}{5} + 1} + C = \frac{r^{\frac{9}{5}}}{\frac{9}{5}} + C = \frac{5}{9} r^{\frac{9}{5}} + C \] And there you have it! This is the result of your integral: \[ \int \sqrt[5]{r^{4}} \, dr = \frac{5}{9} r^{\frac{9}{5}} + C \] Just don't forget the constant of integration \( C \)!