Pregunta
Given the series
use the Integral Test to determine if it converges or diverges.
Ask by Daniel Lewis. in the United States
Mar 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The series
diverges.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Beyond the Answer
To determine whether the series
converges or diverges using the Integral Test, we first consider the function
for
. We need to verify that
is continuous, positive, and decreasing on this interval.
-
Continuity and Positivity: The function
is made up of polynomial terms and is thus continuous for . Since both and are positive for , it follows that for . -
Decreasing: To show that
is decreasing, we compute the derivative : The numeratoris negative for . Therefore, for , indicating that is decreasing.
Now that we’ve established that
is continuous, positive, and decreasing on
, we can apply the Integral Test.
Next, we evaluate the improper integral:
To solve the integral, we can use a substitution. Let
, then
or
. When
,
and as
,
. Thus,
Now evaluating the integral
:
Thus,
Since the integral diverges, by the Integral Test, the series
also diverges. The final conclusion is:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium