Pregunta
upstudy study bank question image url

RUNNING Randi has been training for a marathon, and it is important for her to keep a constant pace. She recorded her time each mile for the first several miles that she ran. - At 1 mile, her time was 10 minutes and 30 seconds. - At 2 miles, her time was 21 minutes. - At 3 miles, her time was 31 minutes and 30 seconds. - At 4 miles, her time was 42 minutes. Part A Write a function to represent her sequence of data. Use \( n \) as the variable. f(n) \( = \) Part B How long will it take her to run a whole marathon? Round your answer to the nearest thousandth if necessary. (Hinda marathon is 26.2 miles.) hours

Ask by Cross May. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Part A** \[ f(n) = 10.5n \quad \text{minutes} \] **Part B** Randi will take approximately 4.585 hours to run the marathon.

Solución

**Part A** To represent Randi's sequence of data, we observe that her cumulative time increases by 10.5 minutes for each additional mile. This indicates a linear relationship between the number of miles run and the total time taken. The function \( f(n) \) can be expressed as: \[ f(n) = 10.5n \quad \text{minutes} \] where: - \( n \) is the number of miles run. - \( f(n) \) is the total time in minutes after running \( n \) miles. **Part B** To determine how long it will take Randi to run a full marathon (26.2 miles), we use the function from Part A: \[ \text{Total Time} = f(n) = 10.5n \] Plugging in \( n = 26.2 \): \[ \text{Total Time} = 10.5 \times 26.2 = 275.1 \text{ minutes} \] To convert minutes into hours: \[ \text{Total Time in Hours} = \frac{275.1}{60} \approx 4.585 \text{ hours} \] **Final Answer:** **Part A** \[ f(n) = 10.5\,n \quad \text{minutes} \] **Part B** Randi will take approximately \( 4.585 \) hours to run the marathon.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To represent Randi's sequence of data as a function of \( n \), we can see that her time increases consistently. The pattern suggests a linear relationship. The time for every mile is increasing by approximately 10-11 minutes. After careful calculations, we can deduce a function that fits her times: \[ f(n) = 10.5n \] where \( f(n) \) is in minutes and \( n \) is the mile number. To find out how long it will take her to run a full marathon (26.2 miles), we can plug \( n = 26.2 \) into our function: \[ f(26.2) = 10.5 \times 26.2 \approx 275.1 \text{ minutes} \] To convert this to hours, we divide by 60: \[ \text{Hours} \approx \frac{275.1}{60} \approx 4.585 \] Rounding to the nearest thousandth, it would take her approximately **4.585 hours** to complete the marathon.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad