Pregunta
upstudy study bank question image url

Solve for \( x \) : (a) \( 4.3^{x}+3^{x}=15 \) (c) \( 2^{x+2}+2^{x-2}+2^{x}=84 \) (e) \( 3^{2 x}-2.3^{x+2}+81=0 \) (g) \( 4^{x}+4.2^{x}-5=0 \)

Ask by Bates Bradley. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are: - (a) \( x = 1 \) - (c) \( x = 4 \) - (e) \( x = 2 \) - (g) \( x = 0 \)

Solución

Let's solve each equation for \( x \) step by step. --- ### Problem (a): \( 4 \cdot 3^{x} + 3^{x} = 15 \) **Solution:** 1. Factor out \( 3^x \): \[ (4 + 1) \cdot 3^{x} = 15 \implies 5 \cdot 3^{x} = 15 \] 2. Divide both sides by 5: \[ 3^{x} = 3 \] 3. Express 3 as \( 3^1 \): \[ 3^{x} = 3^1 \implies x = 1 \] **Answer:** \( x = 1 \) --- ### Problem (c): \( 2^{x+2} + 2^{x-2} + 2^{x} = 84 \) **Solution:** 1. Rewrite each term using properties of exponents: \[ 2^{x+2} = 4 \cdot 2^{x}, \quad 2^{x-2} = \frac{1}{4} \cdot 2^{x}, \quad 2^{x} = 2^{x} \] 2. Substitute back into the equation: \[ 4 \cdot 2^{x} + \frac{1}{4} \cdot 2^{x} + 2^{x} = 84 \] 3. Factor out \( 2^{x} \): \[ \left(4 + \frac{1}{4} + 1\right) \cdot 2^{x} = 84 \implies \frac{21}{4} \cdot 2^{x} = 84 \] 4. Solve for \( 2^{x} \): \[ 2^{x} = 84 \cdot \frac{4}{21} = 16 \] 5. Express 16 as \( 2^4 \): \[ 2^{x} = 2^{4} \implies x = 4 \] **Answer:** \( x = 4 \) --- ### Problem (e): \( 3^{2x} - 2 \cdot 3^{x+2} + 81 = 0 \) **Solution:** 1. Let \( y = 3^{x} \). Then \( 3^{2x} = y^2 \) and \( 3^{x+2} = 9y \). 2. Substitute into the equation: \[ y^2 - 2 \cdot 9y + 81 = 0 \implies y^2 - 18y + 81 = 0 \] 3. Solve the quadratic equation: \[ y = \frac{18 \pm \sqrt{(18)^2 - 4 \cdot 1 \cdot 81}}{2} = \frac{18 \pm 0}{2} = 9 \] 4. Substitute back \( y = 3^{x} \): \[ 3^{x} = 9 \implies 3^{x} = 3^2 \implies x = 2 \] **Answer:** \( x = 2 \) --- ### Problem (g): \( 4^{x} + 4 \cdot 2^{x} - 5 = 0 \) **Solution:** 1. Express \( 4^{x} \) in terms of \( 2^{x} \): \[ 4^{x} = (2^2)^{x} = 2^{2x} \] 2. Let \( y = 2^{x} \). Then \( 2^{2x} = y^2 \). 3. Substitute into the equation: \[ y^2 + 4y - 5 = 0 \] 4. Solve the quadratic equation: \[ y = \frac{-4 \pm \sqrt{16 + 20}}{2} = \frac{-4 \pm 6}{2} \] \[ y = 1 \quad \text{(since \( y = 2^x > 0 \))} \] 5. Substitute back \( y = 2^{x} \): \[ 2^{x} = 1 \implies x = 0 \] **Answer:** \( x = 0 \) --- ### Summary of Solutions: - **(a)** \( x = 1 \) - **(c)** \( x = 4 \) - **(e)** \( x = 2 \) - **(g)** \( x = 0 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve for \( x \) in the given equations, we can use a combination of algebraic manipulations and substitutions. (a) For the equation \( 4.3^{x}+3^{x}=15 \): Let's set \( y = 3^{x} \). Then, we have: \[ 4y + y = 15 \] This simplifies to: \[ 5y = 15 \] So, \( y = 3 \), which means \( 3^{x} = 3 \). Thus, \( x = 1 \). (c) For \( 2^{x+2}+2^{x-2}+2^{x}=84 \): Rewriting this gives: \[ 4 \cdot 2^{x} + \frac{1}{4} \cdot 2^{x} + 2^{x} = 84 \] Combining the terms: \[ (4 + \frac{1}{4} + 1) 2^{x} = 84 \] This simplifies to: \[ \frac{20}{4} + \frac{1}{4} = \frac{21}{4} \cdot 2^{x} = 84 \] So, \[ 2^{x} = \frac{84 \times 4}{21} = 16 \] Thus, \( 2^{x} = 2^{4} \), leading to \( x = 4 \). (e) For \( 3^{2 x}-2.3^{x+2}+81=0 \): Letting \( z = 3^{x} \), we can rewrite the equation as: \[ z^2 - 2 \cdot 9z + 81 = 0 \] Simplifying gives: \[ z^2 - 18z + 81 = 0 \] Factoring: \[ (z - 9)^2 = 0 \] Thus, \( z = 9 \) or \( 3^{x} = 3^{2} \), leading to \( x = 2 \). (g) For \( 4^{x}+4.2^{x}-5=0 \): Recognizing that \( 4^{x} = (2^2)^{x} = 2^{2x} \), we rewrite the equation as: \[ 2^{2x} + 4 \cdot 2^{x} - 5 = 0 \] Let \( u = 2^{x} \), leading to: \[ u^{2} + 4u - 5 = 0 \] Factoring gives: \[ (u + 5)(u - 1) = 0 \] So, \( u = -5 \) (not valid as \( u \) must be positive) or \( u = 1 \), which means \( 2^{x} = 1 \). Thus, \( x = 0 \). The solutions are: (a) \( x = 1 \) (c) \( x = 4 \) (e) \( x = 2 \) (g) \( x = 0 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad