Pregunta

From a group of 10 boys and 12 girls, a committee of 4 students is chosen at random. a. What is the probability that all 4 members on the committee will be girls? b. What is the probability that all 4 members of the committee will be boys? c. What is the probability that there will be at least 1 girl on the committee?

Ask by Fuentes Simmons. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that all 4 committee members are girls is \(\frac{9}{133}\) or about 6.77%. [Continuing to the next parts] **b. Probability that all 4 members are boys** 1. **Number of ways to choose 4 boys out of 10:** \[ \text{Ways to choose boys} = \binom{10}{4} = \frac{10!}{4! \times (10-4)!} = 210 \] 2. **Probability that all 4 members are boys:** \[ P(\text{all boys}) = \frac{210}{7315} = \frac{42}{1463} \approx 0.0287 \text{ or } 2.87\% \] **Final Answer:** The probability that all 4 committee members are boys is \(\frac{42}{1463}\) or approximately 2.87%. **c. Probability that there is at least 1 girl on the committee** 1. **Probability that all 4 members are boys (from part b):** \[ P(\text{all boys}) = \frac{42}{1463} \approx 2.87\% \] 2. **Probability that there is at least 1 girl:** \[ P(\text{at least 1 girl}) = 1 - P(\text{all boys}) = 1 - \frac{42}{1463} = \frac{1421}{1463} \approx 0.9713 \text{ or } 97.13\% \] **Final Answer:** The probability that there is at least 1 girl on the committee is \(\frac{1421}{1463}\) or approximately 97.13%.

Solución

To determine the probability that all 4 members of the committee are girls, we'll use combinatorial analysis. **a. Probability that all 4 members are girls** 1. **Total number of students:** - Boys: 10 - Girls: 12 - **Total:** 10 + 12 = **22** 2. **Total number of ways to choose 4 students out of 22:** \[ \text{Total ways} = \binom{22}{4} = \frac{22!}{4! \times (22-4)!} = 7315 \] 3. **Number of ways to choose 4 girls out of 12:** \[ \text{Ways to choose girls} = \binom{12}{4} = \frac{12!}{4! \times (12-4)!} = 495 \] 4. **Probability that all 4 members are girls:** \[ P(\text{all girls}) = \frac{\text{Ways to choose girls}}{\text{Total ways}} = \frac{495}{7315} \] 5. **Simplifying the fraction:** \[ \frac{495}{7315} = \frac{99}{1463} = \frac{9}{133} \approx 0.0677 \text{ or } 6.77\% \] **Final Answer:** Problem a Answer: The probability is \(\frac{9}{133}\) or approximately 6.77 %.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve these problems, we can use combinations and the concept of probability. First Line: For part (a), the total number of ways to select 4 girls from 12 is given by the combination formula C(n, k) = n! / [k!(n - k)!]. So, C(12, 4) = 495. The total ways to form a committee of 4 from 22 (10 boys + 12 girls) is C(22, 4) = 7315. Therefore, the probability that all 4 members will be girls is 495 / 7315 ≈ 0.0677 or 6.77%. Second Line: For part (b), the number of ways to select 4 boys from 10 is C(10, 4) = 210. Using the same total of 7315, the probability that all 4 members are boys is 210 / 7315 ≈ 0.0287 or 2.87%. For part (c), the probability of at least 1 girl is 1 minus the probability that all are boys (2.87%) and all girls (6.77%), so it’s 1 - (0.0287 + 0.0677) = 1 - 0.0964 = 0.9036 or 90.36%.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad