Pregunta
Solve the equation. \( \frac{7}{4 x-1}=\frac{2}{x+1} \) Select the correct choice below and fill in any answer boxes in your choice. A. The solution set is \( \} \). (Simplify your answer.) B. There is no solution.
Ask by Schofield Lawson. in the United States
Jan 21,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The solution set is \(\{9\}\).
Solución
To solve the equation:
\[
\frac{7}{4x - 1} = \frac{2}{x + 1}
\]
**Step 1: Identify Restrictions**
First, ensure that the denominators are not zero:
1. \(4x - 1 \neq 0 \) ⇒ \( x \neq \frac{1}{4} \)
2. \(x + 1 \neq 0 \) ⇒ \( x \neq -1 \)
**Step 2: Cross-Multiply**
\[
7(x + 1) = 2(4x - 1)
\]
**Step 3: Expand and Simplify**
\[
7x + 7 = 8x - 2
\]
Subtract \(7x\) from both sides:
\[
7 = x - 2
\]
Add 2 to both sides:
\[
x = 9
\]
**Step 4: Verify the Solution**
Ensure \(x = 9\) does not violate any restrictions:
- \(9 \neq \frac{1}{4}\)
- \(9 \neq -1\)
Both conditions are satisfied.
**Conclusion:**
The solution set is \(\{9\}\).
**Answer:**
**A. The solution set is \(\{9\}\).**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve the equation \( \frac{7}{4x - 1} = \frac{2}{x + 1} \), we can start by cross-multiplying to eliminate the fractions: \[ 7(x + 1) = 2(4x - 1) \] Now distribute on both sides: \[ 7x + 7 = 8x - 2 \] Next, we can move all the terms involving \( x \) to one side and the constant terms to the other side: \[ 7 + 2 = 8x - 7x \] This simplifies to: \[ 9 = x \] Thus, the solution set is \( \{ 9 \} \). A. The solution set is \( \{ 9 \} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium