Pregunta
upstudy study bank question image url

\( F(x)=-\frac{3}{x}+5 \) 1 Determine the equation of the tangent at \( x=3 \)

Ask by Blake Vargas. in South Africa
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the tangent at \( x = 3 \) is \( y = \frac{1}{3}x + 3 \).

Solución

To find the equation of the tangent line to the function \( F(x) = -\frac{3}{x} + 5 \) at \( x = 3 \), follow these steps: ### 1. **Find the Point of Tangency** First, calculate the value of \( F(x) \) at \( x = 3 \): \[ F(3) = -\frac{3}{3} + 5 = -1 + 5 = 4 \] So, the point of tangency is \( (3, 4) \). ### 2. **Determine the Slope of the Tangent Line** Next, find the derivative of \( F(x) \) to determine the slope of the tangent line at \( x = 3 \). \[ F(x) = -3x^{-1} + 5 \] \[ F'(x) = \frac{d}{dx} \left( -3x^{-1} \right) + \frac{d}{dx}(5) = 3x^{-2} = \frac{3}{x^2} \] Now, evaluate the derivative at \( x = 3 \): \[ F'(3) = \frac{3}{3^2} = \frac{3}{9} = \frac{1}{3} \] So, the slope (\( m \)) of the tangent line at \( x = 3 \) is \( \frac{1}{3} \). ### 3. **Formulate the Equation of the Tangent Line** Using the point-slope form of a line: \[ y - y_1 = m(x - x_1) \] Where \( (x_1, y_1) = (3, 4) \) and \( m = \frac{1}{3} \): \[ y - 4 = \frac{1}{3}(x - 3) \] Simplifying: \[ y = \frac{1}{3}x + 4 - 1 \] \[ y = \frac{1}{3}x + 3 \] ### **Final Answer** The equation of the tangent at \( x = 3 \) is: \[ y = \frac{1}{3}x + 3 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the equation of the tangent line at \( x=3 \), we first need the derivative \( F'(x) \). The derivative of \( F(x)=-\frac{3}{x}+5 \) is \( F'(x)=\frac{3}{x^2} \). Evaluating at \( x=3 \), we get \( F'(3)=\frac{3}{3^2}=\frac{1}{3} \). Now, calculate \( F(3)=-\frac{3}{3}+5=4 \). Using the point-slope form \( y-y_1=m(x-x_1) \) with \( m=\frac{1}{3} \), \( x_1=3 \), and \( y_1=4 \), the tangent line equation is \( y-4=\frac{1}{3}(x-3) \) or \( y=\frac{1}{3}x + 3 \). To visualize tangent lines, think of a rollercoaster track! At any given point, the slope of the tangent line helps us understand how steep the coaster is at that moment. It’s like having a snapshot of the ride—at \( x=3 \), the slope tells us that for every horizontal move of 3 units, the vertical change is just 1 unit! Mathematics has a rich history intertwined with art and architecture. For instance, ancient Greeks used curves to model celestial bodies, laying the groundwork for calculus. Fast forward to the Renaissance, artists like da Vinci utilized perspective—calculating angles and slopes (tangents) to create depth in their works. So, the next time you marvel at a masterpiece, remember, there's a bit of math hidden there!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad