Pregunta
upstudy study bank question image url

EXERCISE 5
Determine the sum of the series:
.


Determine the sum of the first 40 terms of the arithmetic series

Ask by Vaughan Ramos. in South Africa
Jan 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Summary of Solutions:
  1. 1.1: Sum = -4650
  2. 1.2: Sum = 1653
  3. 1.3: Sum = 1090
  4. 2.1: Sum of first 40 terms = 6320
  5. 2.2: Sum of first 40 terms = -4040

Solución

Certainly! Let’s solve each part of EXERCISE 5 step by step. We’ll be dealing with arithmetic series, where each term increases or decreases by a constant difference. The general formula for the -th term of an arithmetic sequence is:
where:
  • is the first term,
  • is the common difference,
  • is the term number.
The sum of the first terms of an arithmetic series is given by:
where:
  • is the sum of the first terms,
  • is the last term.
Let’s proceed with each part of the exercise.

1. Determine the Sum of the Series

1.1

  • First Term ( ): 11
  • Common Difference ( ):
  • Last Term ( ): -166
Step 1: Find the Number of Terms ( )
Using the -th term formula:
Step 2: Calculate the Sum ( )
Answer: The sum of the series is -4650.

1.2

  • First Term ( ): 1
  • Common Difference ( ):
  • Last Term ( ): 113
Step 1: Find the Number of Terms ( )
Step 2: Calculate the Sum ( )
Answer: The sum of the series is 1653.

1.3

  • First Term ( ): -12
  • Common Difference ( ):
  • Last Term ( ): 121
Step 1: Find the Number of Terms ( )
Step 2: Calculate the Sum ( )
Answer: The sum of the series is 1090.

2. Determine the Sum of the First 40 Terms of the Arithmetic Series

2.1 (First 40 Terms)

  • First Term ( ): 2
  • Common Difference ( ):
  • Number of Terms ( ): 40
Step 1: Find the 40th Term ( )
Step 2: Calculate the Sum ( )
Answer: The sum of the first 40 terms is 6320.

2.2 (Assuming First 40 Terms)

  • First Term ( ): 16
  • Common Difference ( ):
  • Number of Terms ( ): 40
Step 1: Find the 40th Term ( )
Step 2: Calculate the Sum ( )
Alternatively, using the formula:
Answer: The sum of the first 40 terms is -4040.

Summary of Answers

  1. 1.1: The sum is -4650.
  2. 1.2: The sum is 1653.
  3. 1.3: The sum is 1090.
  4. 2.1: The sum of the first 40 terms is 6320.
  5. 2.2: The sum of the first 40 terms is -4040.
If you have any further questions or need clarification on any step, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the sum of the series, let’s break it down into each specific sequence.
  1. For the first series (11 + 8 + 5 + 2 + … - 166):
    This is a decreasing arithmetic sequence where the first term and the common difference . To find the number of terms until reaching -166, use the formula :
    The sum of the first terms can be calculated using the sum formula :
  2. For the second series (1 + 5 + 9 + 13 + … + 113):
    This is an increasing arithmetic series with and . To find the number of terms until 113:
    The sum of the first 29 terms:
  3. For the third series (-12 - 5 + 2 + 9 + … + 121):
    Here, and . Finding the number of terms to 121:
    Therefore the sum of the first 20 terms:
  4. For the arithmetic series (2 + 10 + 18 + … with n = 40):
    Here, and . The sum of the first 40 terms is:
    First, we need to find :
    Now using the sum formula:
  5. For the series (16 + 10 + 4 - 2 - …):
    Here, and . To find the number of terms until reaching the stopping point:
    Utilizing to see where it approaches a stop or a pattern that can reasonably sum. Since no terminating term is set as per your given data, you may prefer summing a first set number (be it 40) accordingly to the derived pattern.
If you need clarification, adjustments, or further breakdowns, let me know!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad