Responder
After 5 years:
- At 8% compound interest: $31,149.76
- At 2.3% compound interest: $23,752.76
Solución
To find the final amount that $21200 will grow to after investing for 5 years at different compound interest rates, we can use the compound interest formula:
\[ A = P \left( 1 + \frac{r}{100} \right)^n \]
where:
- \( A \) is the final amount
- \( P \) is the principal amount (initial investment)
- \( r \) is the annual interest rate
- \( n \) is the number of years
Let's calculate the final amount for each interest rate:
1. For 8% compound interest:
\[ A = 21200 \left( 1 + \frac{8}{100} \right)^5 \]
2. For 2.3% compound interest:
\[ A = 21200 \left( 1 + \frac{2.3}{100} \right)^5 \]
Now, let's calculate the final amounts for each interest rate.
Calculate the value by following steps:
- step0: Calculate:
\(21200\left(1+\frac{8}{100}\right)^{5}\)
- step1: Reduce the fraction:
\(21200\left(1+\frac{2}{25}\right)^{5}\)
- step2: Add the numbers:
\(21200\left(\frac{27}{25}\right)^{5}\)
- step3: Simplify:
\(21200\times \frac{27^{5}}{25^{5}}\)
- step4: Rewrite the expression:
\(25\times 848\times \frac{27^{5}}{25^{5}}\)
- step5: Reduce the numbers:
\(848\times \frac{27^{5}}{25^{4}}\)
- step6: Multiply:
\(\frac{848\times 27^{5}}{25^{4}}\)
Calculate or simplify the expression \( 21200*(1+2.3/100)^5 \).
Calculate the value by following steps:
- step0: Calculate:
\(21200\left(1+\frac{2.3}{100}\right)^{5}\)
- step1: Divide the terms:
\(21200\left(1+\frac{23}{1000}\right)^{5}\)
- step2: Add the numbers:
\(21200\left(\frac{1023}{1000}\right)^{5}\)
- step3: Simplify:
\(21200\times \frac{1023^{5}}{1000^{5}}\)
- step4: Rewrite the expression:
\(200\times 106\times \frac{1023^{5}}{1000^{5}}\)
- step5: Rewrite the expression:
\(200\times 106\times \frac{1023^{5}}{200^{5}\times 5^{5}}\)
- step6: Reduce the numbers:
\(106\times \frac{1023^{5}}{200^{4}\times 5^{5}}\)
- step7: Rewrite the expression:
\(2\times 53\times \frac{1023^{5}}{200^{4}\times 5^{5}}\)
- step8: Rewrite the expression:
\(2\times 53\times \frac{1023^{5}}{8^{4}\times 25^{4}\times 5^{5}}\)
- step9: Rewrite the expression:
\(2\times 53\times \frac{1023^{5}}{2^{12}\times 25^{4}\times 5^{5}}\)
- step10: Reduce the numbers:
\(53\times \frac{1023^{5}}{2^{11}\times 25^{4}\times 5^{5}}\)
- step11: Multiply the fractions:
\(\frac{53\times 1023^{5}}{6400000\times 25^{4}}\)
The final amount that $21200 will grow to after investing for 5 years at 8% compound interest is approximately $31,149.76.
The final amount that $21200 will grow to after investing for 5 years at 2.3% compound interest is approximately $23,752.76.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución