Pregunta
upstudy study bank question image url

Compound interest find the firal amount that 21200 will gron to invest for 5 tears at (1) \( 8 \% \) pa compoind interest? C2) 2,3 pa Compound interest

Ask by Coles Nguyen. in South Africa
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 5 years: - At 8% compound interest: $31,149.76 - At 2.3% compound interest: $23,752.76

Solución

To find the final amount that $21200 will grow to after investing for 5 years at different compound interest rates, we can use the compound interest formula: \[ A = P \left( 1 + \frac{r}{100} \right)^n \] where: - \( A \) is the final amount - \( P \) is the principal amount (initial investment) - \( r \) is the annual interest rate - \( n \) is the number of years Let's calculate the final amount for each interest rate: 1. For 8% compound interest: \[ A = 21200 \left( 1 + \frac{8}{100} \right)^5 \] 2. For 2.3% compound interest: \[ A = 21200 \left( 1 + \frac{2.3}{100} \right)^5 \] Now, let's calculate the final amounts for each interest rate. Calculate the value by following steps: - step0: Calculate: \(21200\left(1+\frac{8}{100}\right)^{5}\) - step1: Reduce the fraction: \(21200\left(1+\frac{2}{25}\right)^{5}\) - step2: Add the numbers: \(21200\left(\frac{27}{25}\right)^{5}\) - step3: Simplify: \(21200\times \frac{27^{5}}{25^{5}}\) - step4: Rewrite the expression: \(25\times 848\times \frac{27^{5}}{25^{5}}\) - step5: Reduce the numbers: \(848\times \frac{27^{5}}{25^{4}}\) - step6: Multiply: \(\frac{848\times 27^{5}}{25^{4}}\) Calculate or simplify the expression \( 21200*(1+2.3/100)^5 \). Calculate the value by following steps: - step0: Calculate: \(21200\left(1+\frac{2.3}{100}\right)^{5}\) - step1: Divide the terms: \(21200\left(1+\frac{23}{1000}\right)^{5}\) - step2: Add the numbers: \(21200\left(\frac{1023}{1000}\right)^{5}\) - step3: Simplify: \(21200\times \frac{1023^{5}}{1000^{5}}\) - step4: Rewrite the expression: \(200\times 106\times \frac{1023^{5}}{1000^{5}}\) - step5: Rewrite the expression: \(200\times 106\times \frac{1023^{5}}{200^{5}\times 5^{5}}\) - step6: Reduce the numbers: \(106\times \frac{1023^{5}}{200^{4}\times 5^{5}}\) - step7: Rewrite the expression: \(2\times 53\times \frac{1023^{5}}{200^{4}\times 5^{5}}\) - step8: Rewrite the expression: \(2\times 53\times \frac{1023^{5}}{8^{4}\times 25^{4}\times 5^{5}}\) - step9: Rewrite the expression: \(2\times 53\times \frac{1023^{5}}{2^{12}\times 25^{4}\times 5^{5}}\) - step10: Reduce the numbers: \(53\times \frac{1023^{5}}{2^{11}\times 25^{4}\times 5^{5}}\) - step11: Multiply the fractions: \(\frac{53\times 1023^{5}}{6400000\times 25^{4}}\) The final amount that $21200 will grow to after investing for 5 years at 8% compound interest is approximately $31,149.76. The final amount that $21200 will grow to after investing for 5 years at 2.3% compound interest is approximately $23,752.76.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the final amount from an investment of $21,200 using compound interest, you can use the formula: \( A = P(1 + r/n)^{nt} \), where \( A \) is the amount of money accumulated after n years, including interest, \( P \) is the principal amount (initial investment), \( r \) is the annual interest rate (decimal), \( n \) is the number of times that interest is compounded per year, and \( t \) is the number of years the money is invested. For the first scenario with \( 8\% \) per annum compounded annually for 5 years: Final Amount \( A = 21,200 \times (1 + 0.08/1)^{1 \times 5} = 21,200 \times (1.08)^{5} \approx 31,267.62 \). And for the second scenario with \( 2.3\% \) per annum compounded annually for the same duration: Final Amount \( A = 21,200 \times (1 + 0.023/1)^{1 \times 5} = 21,200 \times (1.023)^{5} \approx 24,568.44 \). So, after 5 years at \( 8\% \), you would have around $31,267.62, and at \( 2.3\% \), you would have approximately $24,568.44. Happy compounding!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad