Pregunta
upstudy study bank question image url

Question 4(Multiple Choice Worth 1 points) (05.03 MC) Determine which system will produce infinitely many solutions.

Ask by Moreno Schofield. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A system has infinitely many solutions if both equations represent the same line.

Solución

To determine which system will produce infinitely many solutions, we need to analyze the equations in the system and see if they are dependent or independent. Let's assume the system of equations is: \[ \begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases} \] If the two equations are the same, then the system will have infinitely many solutions. This is because the two equations represent the same line, and any point on this line will satisfy both equations. Therefore, the system will produce infinitely many solutions if the two equations are the same.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To produce infinitely many solutions in a system of equations, the equations must represent the same line when graphed. This generally happens when the equations are equivalent, meaning that one can be derived from the other by multiplying or dividing by a non-zero constant. For example, if you have two equations, such as \(2x + 4y = 8\) and \(x + 2y = 4\), they are essentially the same line—which reveals a delightful continuum of solutions! To spot these situations, always look for the coefficients of \(x\) and \(y\) to be proportional across the equations. Common mistakes include miscalculating the coefficients or the constants, leading to false conclusions of no solutions or a unique solution. A quick check by rearranging the equations can aid in accurately identifying infinite solutions!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad