The equation \( 12 t^{2}+13 t-4=0 \) has solutions of the form \[ t=\frac{N \pm \sqrt{D}}{M} \] (A) Use the quadratic formula to solve this equation and find the appropriate integer values of \( N, M \), and \( D \). Do not worry about simplifying the \( \sqrt{D} \) yet in this part of the problem. \[ \begin{array}{c} N=\begin{array}{c} 13 \times x ; D=361 \vee 0^{6} \\ M=24 \quad \checkmark \quad 0^{6} \end{array} \end{array} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve the quadratic equation \( 12t^2 + 13t - 4 = 0 \) using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), we can identify the coefficients: \( a = 12 \), \( b = 13 \), and \( c = -4 \). First, we compute the discriminant \( D \): \[ D = b^2 - 4ac = 13^2 - 4 \cdot 12 \cdot (-4) = 169 + 192 = 361. \] Now, substituting the values into the quadratic formula gives us: \[ t = \frac{-13 \pm \sqrt{361}}{2 \cdot 12} = \frac{-13 \pm 19}{24}. \] From this equation, we can identify that the values needed are: \[ N = -13, \quad M = 24, \quad D = 361. \] So, you can summarize: N = -13, M = 24, D = 361.