- \( (-2)^{2}(-2)^{6}=(-2)=\square \) - \( (-6)^{2}(-6)^{2}=(-6) \square=\square \) - \( (+4)^{2}(+4)^{3}=(+4)=\square \) - \( (-1)^{7}(-1)^{8}=(-1)=\square \) - \( (+2)^{4}(+2)^{3}=(+2)=\square \) - \( (+3)^{2}(+3)^{2}=(+3)=\square \) - \( (-5)^{2}(-5)^{4}=(-5)=\square \) - \( (-7)^{2}(-7)^{1}=(-7)=\square \) - \( (-2)^{5}(-2)^{3}=(-2)=\square \) - \( (+9)^{2}(+9)^{1}=(+9)=\square \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Did you know that exponents tell you how many times to multiply a number by itself? For example, in the case of \( (-2)^2 (-2)^6 \), you simply add the exponents (2+6=8) to find that the result is equal to \( (-2)^8 \). This nifty rule simplifies calculations and helps avoid the hassle of multiplying large numbers repeatedly! When working with bases that are both positive and negative, it’s crucial to keep track of that sign. For example, \( (-1)^{7} \) gives you -1 (since it’s an odd exponent), while \( (-1)^{8} \) yields +1. So, when multiplying them together, don’t be surprised if the result flips between positive and negative! Such little details can turn a fun math problem into a tricky one if you’re not paying attention!