Pregunta
upstudy study bank question image url

  1. (2 points) Solve the following initial value problem:

Ask by Logan Potter. in the United States
Mar 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the initial value problem is:

Solución

We start by writing the differential equation and its initial conditions:
Step 1. Find the characteristic equation.
Assume a solution of the form . Substituting into the differential equation gives:
Since , we have:
Step 2. Solve the characteristic equation.
Factor the quadratic equation:
Thus, the roots are:
Step 3. Write the general solution.
Since the characteristic roots are real and distinct, the general solution to the differential equation is:
where and are constants to be determined by the initial conditions.
Step 4. Apply the initial conditions.
  1. Using :
  1. Find the expression for and apply :
Differentiate :
Evaluate at :
Now we have the system of equations:
Step 5. Solve for and .
Solve the first equation for :
Substitute into the second equation:
Simplify:
Add 8 to both sides:
Then, substitute back to find :
Step 6. Write the final solution.
Substitute and into the general solution:
This is the solution to the initial value problem.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the initial value problem, we first rewrite the given second-order linear homogeneous differential equation:
We start by finding the characteristic equation, which is obtained by substituting :
Next, we can factor this quadratic equation:
This gives us the roots:
The general solution of the differential equation is:
where and are constants to be determined from the initial conditions.
Now, we apply the initial conditions:
  1. For :
  1. For , we first differentiate :
Now applying the second initial condition :
Now we have a system of two equations:
  1. ,
  2. .
We can rewrite the second equation:
Now we can solve this system. From the first equation, we can express :
Substituting this into the second equation:
Now substituting back to find :
Thus, we have and .
Finally, we can write the particular solution as:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad