TURTLE A turtle is \( 20 \frac{5}{6} \) inches below the surface of a pond. It dives to a depth of \( 32 \frac{1}{4} \) inches. What is the change in the turtle's position?
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the change in the turtle's position, we first need to add its current depth to the additional depth it dives. The turtle is currently at \( 20 \frac{5}{6} \) inches below the surface. The depth it dives is \( 32 \frac{1}{4} \) inches. First, convert both mixed numbers to improper fractions: - \( 20 \frac{5}{6} = \frac{20 \times 6 + 5}{6} = \frac{125}{6} \) - \( 32 \frac{1}{4} = \frac{32 \times 4 + 1}{4} = \frac{129}{4} \) Next, find a common denominator to add these two fractions. The least common multiple of 6 and 4 is 12. Now convert both fractions: - \( \frac{125}{6} = \frac{125 \times 2}{6 \times 2} = \frac{250}{12} \) - \( \frac{129}{4} = \frac{129 \times 3}{4 \times 3} = \frac{387}{12} \) Now, add the two fractions: \[ \frac{250}{12} + \frac{387}{12} = \frac{250 + 387}{12} = \frac{637}{12} \] Now, convert \( \frac{637}{12} \) back to a mixed number: - \( 637 \div 12 = 53 \) remainder \( 1 \), so \( \frac{637}{12} = 53 \frac{1}{12} \). Thus, the change in the turtle’s position is \( 53 \frac{1}{12} \) inches below the surface.