E/P) 17 Find the remainder when \( x^{3}+6 x^{2}+5 x-12 \) is divided by \( i x-2 \), ii \( x+3 \). b Hence, or otherwise, find all the solutions to the equation \( x^{3}+6 x^{2}+5 x-12=0 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the remainder when dividing the polynomial \( f(x) = x^{3} + 6x^{2} + 5x - 12 \) by \( ix - 2 \), we can use the remainder theorem. Here, let \( x = \frac{2}{i} = -2i \): \[ f(-2i) = (-2i)^{3} + 6(-2i)^{2} + 5(-2i) - 12 = -8i^{3} + 6(4)(-1) - 10i - 12. \] Calculating this gives us \( -8(-i) - 24 - 10i - 12 = 8i - 24 - 10i - 12 = -2i - 36 \). Now, for the divisor \( x + 3 \), let \( x = -3 \): \[ f(-3) = (-3)^{3} + 6(-3)^{2} + 5(-3) - 12 = -27 + 54 - 15 - 12 = 0. \] So, when dividing by \( x + 3 \), the remainder is 0, indicating that \( x = -3 \) is a root of the polynomial. To find the other roots, since \( x + 3 \) is a factor, we can factor \( f(x) \) as \( f(x) = (x + 3)(x^2 + Ax + B) \) and solving for \( A \) and \( B \) using polynomial expansion gives us the other quadratic factor, leading us to find \( A = 3 \) and \( B = -4 \): \[ x^2 + 3x - 4 = 0. \] Factoring or using the quadratic formula reveals the roots \( x = 1 \) and \( x = -4 \). Thus, the solutions to \( x^{3}+6 x^{2}+5 x-12=0 \) are \( x = -3, 1, -4 \).