Pregunta
\[ \text{Find } 2011^2 - 2010^2 \text{?} \]
Ask by Cross Phillips. in the United States
Feb 07,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
2011² - 2010² = 4021
Solución
We can use the difference of squares formula, which states that a² - b² = (a + b)(a - b).
Here, a = 2011 and b = 2010. Plugging these in:
2011² - 2010² = (2011 + 2010) × (2011 - 2010)
= (4021) × (1)
= 4021
Thus, the value of 2011² - 2010² is 4021.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
![](/pmw/light_bulb.png?etag=525fd69ac661e11754e2fc9f1b18a4ee)
![](/pmw/spiral_notepad.png?etag=abe3906b7558c543a7b30ba53a3b5a5b)
The Deep Dive
To find \( 2011^2 - 2010^2 \), we can use the difference of squares formula, which states that \( a^2 - b^2 = (a - b)(a + b) \). Here, let \( a = 2011 \) and \( b = 2010 \). So, we have: \[ 2011^2 - 2010^2 = (2011 - 2010)(2011 + 2010) \] Calculating each part: \[ 2011 - 2010 = 1 \] \[ 2011 + 2010 = 4021 \] Now, substituting back into the formula gives: \[ 2011^2 - 2010^2 = 1 \times 4021 = 4021 \] Therefore, \[ \text{The answer is } 4021. \]
![](/pmw/img-try-permium.webp)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium